1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mixer [17]
3 years ago
6

Find the limit

Mathematics
2 answers:
Lana71 [14]3 years ago
7 0

Step-by-step explanation:

<h3>Appropriate Question :-</h3>

Find the limit

\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right]

\large\underline{\sf{Solution-}}

Given expression is

\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right]

On substituting directly x = 1, we get,

\rm \: = \: \sf \dfrac{1-2}{1 - 1}-\dfrac{1}{1 - 3 + 2}

\rm \: = \sf \: \: - \infty \: - \: \infty

which is indeterminant form.

Consider again,

\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right]

can be rewritten as

\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x( {x}^{2} - 3x + 2)}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x( {x}^{2} - 2x - x + 2)}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x( x(x - 2) - 1(x - 2))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x(x - 2) \: (x - 1))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ {(x - 2)}^{2} - 1}{x(x - 2) \: (x - 1))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ (x - 2 - 1)(x - 2 + 1)}{x(x - 2) \: (x - 1))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ (x - 3)(x - 1)}{x(x - 2) \: (x - 1))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ (x - 3)}{x(x - 2)}\right]

\rm \: = \: \sf \: \dfrac{1 - 3}{1 \times (1 - 2)}

\rm \: = \: \sf \: \dfrac{ - 2}{ - 1}

\rm \: = \: \sf \boxed{2}

Hence,

\rm\implies \:\boxed{ \rm{ \:\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right] = 2 \: }}

\rule{190pt}{2pt}

muminat3 years ago
3 0

Answer:

Does not exist

Step-by-step explanation:

,, \lim_{x \to 1} \left[\frac{x-2}{x^{2}-x}-\frac{1}{x^{2}-3x^{2}+2x} \right] \\ \\ \lim_{x \to 1} \left[\frac{x-2}{x(x-1)}-\frac{1}{-2x(x-1)} \right] \\ \\ \lim_{x \to 1} \left[\frac{-2(x-2)}{-2x(x-1)}-\frac{1}{-2x(x-1)} \right] \\ \\ \lim_{x \to 1} \left[\frac{-2x+3}{-2x(x-1)} \right]

The limit doesn't exist.

You might be interested in
Helpppppppppppppppppp
Mamont248 [21]
I’m pretty sure that’s true.
4 0
3 years ago
A line has slope
loris [4]
Y = mx+b
-1 = 13/4 (-1) +b
-4/4 + 13/4 = b
9/4 = b
3 0
3 years ago
A diver takes a running leap off of a 40 foot cliff into a pool of water. When she is 5 feet from the cliff,
padilas [110]

of" (and any subsequent words) was ignored because we limit queries to 32 words.

8 0
3 years ago
Please help me i don’t know how to solve this
murzikaleks [220]

Answer:

welp good luck ha

Step-by-step explanation:

3 0
3 years ago
HELP ASAP!!!! will mark brainliest!!!!!!
amid [387]

Answer:

see blowe

Step-by-step explanation:

tranige is 2 side

6 0
3 years ago
Other questions:
  • Which system of linear inequalities is graphed?
    5·2 answers
  • The length of a rectangular picture is 5 inches more than three times the width. Find the dimensions of the picture if it’s peri
    8·1 answer
  • Write the equation -24x+(-4)+-2 in standard standard form using integer coefficients ​
    13·1 answer
  • Ction f(x) = 42% - 100?
    15·1 answer
  • Estimate the area of the parallelogram.
    7·2 answers
  • The loan will be for $25900 over 5 years at 6.25% what will the interest be on the loan
    7·1 answer
  • The equation of a line is y=1/4x-2 What is the equation of the line that is parallel to the first line and passes through (4, –2
    9·1 answer
  • Translate the phrase into an algebraic expression.<br> 3 more than b
    7·1 answer
  • GUYS HELP PLS WHAT IS AN EQUATION FOR THIS PROBLEM
    10·1 answer
  • Find the value of X for the given parallelogram
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!