1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mixer [17]
3 years ago
6

Find the limit

Mathematics
2 answers:
Lana71 [14]3 years ago
7 0

Step-by-step explanation:

<h3>Appropriate Question :-</h3>

Find the limit

\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right]

\large\underline{\sf{Solution-}}

Given expression is

\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right]

On substituting directly x = 1, we get,

\rm \: = \: \sf \dfrac{1-2}{1 - 1}-\dfrac{1}{1 - 3 + 2}

\rm \: = \sf \: \: - \infty \: - \: \infty

which is indeterminant form.

Consider again,

\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right]

can be rewritten as

\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x( {x}^{2} - 3x + 2)}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x( {x}^{2} - 2x - x + 2)}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x( x(x - 2) - 1(x - 2))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x(x - 2) \: (x - 1))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ {(x - 2)}^{2} - 1}{x(x - 2) \: (x - 1))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ (x - 2 - 1)(x - 2 + 1)}{x(x - 2) \: (x - 1))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ (x - 3)(x - 1)}{x(x - 2) \: (x - 1))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ (x - 3)}{x(x - 2)}\right]

\rm \: = \: \sf \: \dfrac{1 - 3}{1 \times (1 - 2)}

\rm \: = \: \sf \: \dfrac{ - 2}{ - 1}

\rm \: = \: \sf \boxed{2}

Hence,

\rm\implies \:\boxed{ \rm{ \:\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right] = 2 \: }}

\rule{190pt}{2pt}

muminat3 years ago
3 0

Answer:

Does not exist

Step-by-step explanation:

,, \lim_{x \to 1} \left[\frac{x-2}{x^{2}-x}-\frac{1}{x^{2}-3x^{2}+2x} \right] \\ \\ \lim_{x \to 1} \left[\frac{x-2}{x(x-1)}-\frac{1}{-2x(x-1)} \right] \\ \\ \lim_{x \to 1} \left[\frac{-2(x-2)}{-2x(x-1)}-\frac{1}{-2x(x-1)} \right] \\ \\ \lim_{x \to 1} \left[\frac{-2x+3}{-2x(x-1)} \right]

The limit doesn't exist.

You might be interested in
ASAP please need help
attashe74 [19]

Answer:

The slide

Step-by-step explanation:

the slide cause they counting by 5s so there are 35 kids on that slide.

7 0
3 years ago
Pls help I’ll give extra pints
Sonja [21]

Answer:

pls help with what brainlics

4 0
3 years ago
Read 2 more answers
7/10 - 5/8 in simplest form ​
NISA [10]

Answer:

3/40 :D

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Find the value of the power.<br><br> 8^3 =<br><br> Answer
mario62 [17]

Answer:512

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
How to identify the slope of the line that passes through the given points 4,4 and -2,-3?
Eva8 [605]
A=(-3-4)/(-2-4)=-7/-6=7/6
7 0
3 years ago
Other questions:
  • How many times can 15 go into 48
    15·2 answers
  • Determine if the number is written in scientific notation. if not correct it.
    12·1 answer
  • Evaluate (4.0x10^5)(7.0x10^7)
    9·1 answer
  • 5(-2 -2p) simplify expression
    10·2 answers
  • Finding the Midpoint of the Two Coordinates<br> 6.) A(-2, 3), B(5,-1)
    5·1 answer
  • Solve Gx) for the given domain.
    8·1 answer
  • 10(2x+-15)= 40x=30 how do i solve this?
    12·1 answer
  • When the equation 16/x = 4 is simplified, the value of x is??
    9·2 answers
  • Suppose that 28% of domestic adoptions are transracial, and that 84% of international adoptions are
    6·2 answers
  • I need help with this question​
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!