1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mixer [17]
2 years ago
6

Find the limit

Mathematics
2 answers:
Lana71 [14]2 years ago
7 0

Step-by-step explanation:

<h3>Appropriate Question :-</h3>

Find the limit

\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right]

\large\underline{\sf{Solution-}}

Given expression is

\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right]

On substituting directly x = 1, we get,

\rm \: = \: \sf \dfrac{1-2}{1 - 1}-\dfrac{1}{1 - 3 + 2}

\rm \: = \sf \: \: - \infty \: - \: \infty

which is indeterminant form.

Consider again,

\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right]

can be rewritten as

\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x( {x}^{2} - 3x + 2)}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x( {x}^{2} - 2x - x + 2)}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x( x(x - 2) - 1(x - 2))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x(x - 2) \: (x - 1))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ {(x - 2)}^{2} - 1}{x(x - 2) \: (x - 1))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ (x - 2 - 1)(x - 2 + 1)}{x(x - 2) \: (x - 1))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ (x - 3)(x - 1)}{x(x - 2) \: (x - 1))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ (x - 3)}{x(x - 2)}\right]

\rm \: = \: \sf \: \dfrac{1 - 3}{1 \times (1 - 2)}

\rm \: = \: \sf \: \dfrac{ - 2}{ - 1}

\rm \: = \: \sf \boxed{2}

Hence,

\rm\implies \:\boxed{ \rm{ \:\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right] = 2 \: }}

\rule{190pt}{2pt}

muminat2 years ago
3 0

Answer:

Does not exist

Step-by-step explanation:

,, \lim_{x \to 1} \left[\frac{x-2}{x^{2}-x}-\frac{1}{x^{2}-3x^{2}+2x} \right] \\ \\ \lim_{x \to 1} \left[\frac{x-2}{x(x-1)}-\frac{1}{-2x(x-1)} \right] \\ \\ \lim_{x \to 1} \left[\frac{-2(x-2)}{-2x(x-1)}-\frac{1}{-2x(x-1)} \right] \\ \\ \lim_{x \to 1} \left[\frac{-2x+3}{-2x(x-1)} \right]

The limit doesn't exist.

You might be interested in
Please help this is including substitution and system of equations.
Darina [25.2K]

Answer: I gotcha

Step-by-step explanation:

B, C, C, D, B

I just helped my brother with this

6 0
3 years ago
7 1/3 + 5 5/6 sum up as a fraction please 100 points
beks73 [17]

Answer:

The answer is 13 1/6

Step-by-step explanation:

The answer is 18 because 7 1/3 turns into 7 2/6 and 7 * 6 is 42 and 42 plus 2 is 44. Next You turn 5 5/6 into a improper fraction which turns into 35/6 and 35 plus 44 is 79/6 and 79/6 simplified is 13 1/6

3 0
2 years ago
1. After teaching about the world’s biggest ice cream cone Mr. Karr decided to make one of his own with a twist. He wants the co
sattari [20]
63? I just multiplied 9x14/2
8 0
3 years ago
Evaluate 2b² - 3b + 4a² for a= -6 and b=8
eduard

Answer:

Step-by-step explanation:

2b^2 - 3b + 4a^2........a =-6 and b = 8

now we sub

2(8^2) - 3(8) + 4(-6^2)

2(64) - 24 + 4(36)

128 - 24 + 144

272 - 24

248 <==

7 0
3 years ago
Verify a(b-c)=ab-ac for a=1.6;b=1/-2;&amp; c=-5/-7​
harina [27]

Given:

a=1.6,b=\dfrac{1}{-2},c=\dfrac{-5}{-7}

To verify:

a(b-c)=ab-ac for the given values.

Solution:

We have,

a=1.6,b=\dfrac{1}{-2},c=\dfrac{-5}{-7}

We need to verify a(b-c)=ab-ac.

Taking left hand side, we get

a(b-c)=1.6\left(\dfrac{1}{-2}-\dfrac{-5}{-7}\right)

a(b-c)=1.6\left(-\dfrac{1}{2}-\dfrac{5}{7}\right)

Taking LCM, we get

a(b-c)=1.6\left(\dfrac{-7-10}{14}\right)

a(b-c)=\dfrac{16}{10}\left(\dfrac{-17}{14}\right)

a(b-c)=\dfrac{8}{5}\left(\dfrac{-17}{14}\right)

a(b-c)=-\dfrac{68}{35}\right)

Taking right hand side, we get

ab-ac=1.6\times \dfrac{1}{-2}-1.6\times \dfrac{-5}{-7}

ab-ac=-\dfrac{16}{20}-\dfrac{8}{7}

ab-ac=-\dfrac{4}{5}-\dfrac{8}{7}

Taking LCM, we get

ab-ac=\dfrac{-28-40}{35}

ab-ac=\dfrac{-68}{35}

Now,

LHS=RHS

Hence proved.

7 0
2 years ago
Other questions:
  • Which angle is a vertical angle with Angle EFD?
    5·1 answer
  • A fair coin is flipped 10 times and the results are observed. The coin lands heads-side up 4 times.
    10·2 answers
  • ^^^ help would be appreciated
    7·1 answer
  • 6x-y=8<br> 7x-y=9<br> Solve linear systems by Multiplying first
    9·1 answer
  • Help math is not my subject
    7·2 answers
  • (look at the image) can i get help with these 2 questions?
    6·1 answer
  • Can someone answer this
    9·1 answer
  • Find the mean and range of: 1.5, 0.5, 2, 3, 2.5
    11·1 answer
  • Below is a table for f(x) = 3x + 1. Using the table, determine the value of x when f(x) = 13​
    13·1 answer
  • In rectangle GRAM below GA =4×+17 and MR= 7x-4 find the value of x and the lenghts of GA MR
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!