The correct structure of the question is as follows:
The function f(x) = x^3 describes a cube's volume, f(x) in cubic inches, whose length, width, and height each measures x inches. If x is changing, find the (instantaneous) rate of change of the volume with respect to x at the moment when x = 3 inches.
Answer:
Step-by-step explanation:
Given that:
f(x) = x^3
Then;
V = x^3
The rate whereby V is changing with respect to time is can be determined by taking the differentiation of V
dV/dx = 3x^2
Now, at the moment when x = 3;
dV/dx = 3(3)^2
dV/dx = 3(9)
dV/dx = 27 cubic inch per inch
Suppose it is at the moment when x = 9
Then;
dV/dx = 3(9)^2
dV/dx = 3(81)
dV/dx = 243 cubic inch per inch
9514 1404 393
Answer:
470.16 cm²
Step-by-step explanation:
The apothem of the base is used for two purposes: to find the area of the base, and to find the slant height of each face.
The apothem of the base for side length s is ...
s/2 = a·tan(π/8)
a = s/(2·tan(π/8)) ≈ 7.24 cm
The slant height of a triangular face is found using the Pythagorean theorem. The apothem of the base and the height are legs of the right triangle whose hypotenuse is the slant height. For slant height x, we have ...
x² = 10² + a² = 100 +52.46
x ≈ √152.46 ≈ 12.35
__
The area of the 8 triangular faces will be ...
A = 1/2Px . . . . where P is the perimeter of the pyramid
The area of the base will be ...
A = 1/2Pa
So, the total surface area is ...
A = 1/2P(a + x) = (1/2)(8)(6 cm)(7.24 +12.35 cm) ≈ 470.16 cm²
The smallest possible value is 2625
Answer:
20 votes
Step-by-step explanation:
You start with the percents: You always start with 100%
100-5=95
Then you multiply
95 x 4
4 is how many votes he received the 2nd time
95 x 4= 380
Then you subtract
380-360= 20
Your Welcome :)
The expected value is $38.46.
The probability of drawing a 10 from any suit is 4/52. Multiply this by the earnings, 500:
4/52(500) = 2000/52 = 38.46