Answer:
I. The balloon has a volume of 22.4L
III. The balloon contains 6.022x10^23 molecules.
Explanation:
At stp, it has been proven that 1mole of a gas occupy 22.4L.
Therefore, option (i) is correct.
The molar mass N2 = 14.01 x 2 = 28.02g/mol
Number of mole of N2 = 1 mole
Mass of N2 =..?
Mass = mole x molar Mass
Mass of N2 = 1 x 28.02 = 28.02g.
The mass content of the balloon is 28.02g, therefore, option (ii) is wrong.
From Avogadro's hypothesis, we understood that 1 mole of any substance contains 6.02x10^23 molecules. This implies that 1 mole of N2 also contains 6.02x10^23 molecules
Therefore, option (iii) is correct.
The correct options to the question are:
Option i and option iii
<span>Boron has a lot of different isotopes, most of which having a very short half life (ranging from 770 milliseconds for Boron-8 down to 150 yoctoseconds for boron-7). But the two isotopes Boron-10 and Boron-11 are stable with about 80.1% of the naturally occurring boron being boron-11 and the remaining 19.9% being boron-10. The weighted average weight of those 2 isotopes has the value of 10.81.
The reason they use the average mass of an element for it's atomic weight is because elements in nature are rarely single isotopes. The weighted average allows us to easily compare relative number of atoms of one element against relative numbers of atoms of another element assuming that the experimenters are getting isotope ratios close to their natural ratios.</span>
Answer: b) Crash 2; the force on the cart was stronger in this crash, so the force on the skateboard was also stronger.
Explanation:
<span>Where is most of the high-level waste from nuclear reactors stored?
</span><span>the ocean</span>