-3 3/4
Decimal form: -3.75
Answer:
Total annual premium = $1770.10
Step-by-step explanation:
Given the information in the problem, looking at the different categories of each level of insurance and the corresponding premium will give you the amounts for each part. To find the total annual premium, you need to find the sum of all the parts and then multiply this by the rating factor for his gender and age group.
Since he is purchasing 100/300/100 liability insurance, you need to first look at the 'Liability Insurance' table and locate the 100/300 option under 'Bodily Injury'. This premium is $450. Also, he is purchasing an additional 100 for Property damage which is an added premium of $375.
Next, he is getting collision insurance with a $100 deductible. This is the second column in the second table and has a premium of $215. He also wants comprehensive insurance with a $250 deductible which has a premium of $102.
Since he is a 26-year-old male, his rating is 1.55, so we will need to multiply the sum of his premiums by this number:
(450 + 375 + 215 + 102)1.55 = $1770.10
Answer: 975.
A 28% discount makes 702 72% of the original price, so 702/.72 gives 975
Hope this helps :)
Answer:
transform boundary
Step-by-step explanation:
I'm not too sure, but a transform boundary is where two plates crash into each other, creating mountains.
the complete question is
Find two numbers whose difference is 46 and whose product is a minimum
Let
x------->larger number
y-------> smaller number
P-------> product of the two numbers
we know that
-----> equation 1
-----> equation 2
substitute equation 1 in equation 2
![P=x*[x-46]\\ P=x^{2} -46x](https://tex.z-dn.net/?f=%20P%3Dx%2A%5Bx-46%5D%5C%5C%20P%3Dx%5E%7B2%7D%20-46x%20)
using a graph tool
see the attached figure
Find the value of x for that the product P is a minimum
the vertex is the point 
that means, for 
the product is a minimum 
find the value of y

therefore
the answer is
the numbers are
and 