The expression that would be added to both sides is (b/2a)^2
<h3>How to determine the expression?</h3>
The equation is given as:
x^2 + b/ax + __ = c/a + __
Take the coefficient of x
b/a
Divide by 2
b/2a
Square the expression
(b/2a)^2
Hence, the expression that would be added to both sides is (b/2a)^2
Read more about quadratic equation at:
brainly.com/question/10449635
#SPJ1
Functions and equations
We have that:

Let's name each side of it with f(x) and g(x):
Then, we have that:

Then, the answer is C
<h2>
Answer: C</h2>
f(x)=(2x−3)(x+6)(5x+6)f, left parenthesis, x, right parenthesis, equals, left parenthesis, 2, x, minus, 3, right parenthesis, le
bazaltina [42]
Answer:
566
Step-by-step explanation:
I got it right..................
Answer:

![\sqrt[3]{0.95} \approx 0.9833](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B0.95%7D%20%5Capprox%200.9833)
![\sqrt[3]{1.1} \approx 1.0333](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B1.1%7D%20%5Capprox%201.0333)
Step-by-step explanation:
Given the function: ![g(x)=\sqrt[3]{1+x}](https://tex.z-dn.net/?f=g%28x%29%3D%5Csqrt%5B3%5D%7B1%2Bx%7D)
We are to determine the linear approximation of the function g(x) at a = 0.
Linear Approximating Polynomial,
a=0
![g(0)=\sqrt[3]{1+0}=1](https://tex.z-dn.net/?f=g%280%29%3D%5Csqrt%5B3%5D%7B1%2B0%7D%3D1)

Therefore:

(b)![\sqrt[3]{0.95}= \sqrt[3]{1-0.05}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B0.95%7D%3D%20%5Csqrt%5B3%5D%7B1-0.05%7D)
When x = - 0.05

![\sqrt[3]{0.95} \approx 0.9833](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B0.95%7D%20%5Capprox%200.9833)
(c)
(b)![\sqrt[3]{1.1}= \sqrt[3]{1+0.1}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B1.1%7D%3D%20%5Csqrt%5B3%5D%7B1%2B0.1%7D)
When x = 0.1

![\sqrt[3]{1.1} \approx 1.0333](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B1.1%7D%20%5Capprox%201.0333)