1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lynna [10]
3 years ago
12

Hi, pls help with this question. Thank you.

Physics
1 answer:
topjm [15]3 years ago
5 0

Answer:

i: Gamma Rays

ii: Infrared

Explanation:

It just is:)

You might be interested in
How much heat is gained by 1.0 gram of iron when its heated 15 degrees celsius
Firdavs [7]
Q = mass water x specific heat water x delta T. 
<span>714,000 = mass water x specific heat water x 30.
Substitute specific heat water and solve for mass water.</span>
3 0
2 years ago
If the average distance between bumps on a road is about 10 m and the natural frequency of the suspension system in the car is a
Mnenie [13.5K]
When you hit a bump every 0.9 seconds.
3 0
3 years ago
Putting a marshmallow directly in the fire
Greeley [361]

Answer:

A conduction is the answer

Explanation:

5 0
2 years ago
A 34-m length of wire is stretched horizontally between two vertical posts. The wire carries a current of 68 A and experiences a
il63 [147K]

Answer:

7.28×10⁻⁵ T

Explanation:

Applying,

F = BILsin∅............. Equation 1

Where F = magnetic force, B = earth's magnetic field, I = current flowing through the wire, L = Length of the wire, ∅ = angle between the field and the wire.

make B the subject of the equation

B = F/ILsin∅.................. Equation 2

From the question,

Given: F = 0.16 N, I = 68 A, L = 34 m, ∅ = 72°

Substitute these values into equation 2

B = 0.16/(68×34×sin72°)

B = 0.16/(68×34×0.95)

B = 0.16/2196.4

B = 7.28×10⁻⁵ T

7 0
2 years ago
A 70mm long blockhas cross-section of 50mm by 10mm the block is subjected to forces 60KN (tension) on the 50mm by 10mm face and
sammy [17]

Answer:

970 kN

Explanation:

The length of the block = 70 mm

The cross section of the block = 50 mm by 10 mm

The tension force applies to the 50 mm by 10 mm face, F₁ = 60 kN

The compression force applied to the 70 mm by 10 mm face, F₂ = 110 kN

By volumetric stress, we have that for there to be no change in volume, the total pressure applied by the given applied forces should be equal to the pressure removed by the added applied force

The pressure due to the force F₁ = 60 kN/(50 mm × 10 mm) = 120 MPa

The pressure due to the force F₂ = 110 kN/(70 mm × 10 mm) = 157.142857 MPa

The total pressure applied to the block, P = 120 MPa + 157.142857 MPa = 277.142857 MPa

The required force, F₃ = 277.142857 MPa × (70 mm × 50 mm) = 970 kN

7 0
2 years ago
Other questions:
  • If a particle with a charge of +3.3 × 10?18 C is attracted to another particle by a force of 2.5 × 10?8 N, what is the magnitude
    7·1 answer
  • An LC circuit consists of a 3.4-µF capacitor and a coil with a self-inductance 0.080 H and no appreciable resistance. At t = 0 t
    6·1 answer
  • These four surfaces are opaque; that is they reflect or absorb certain rays of light determine the color
    8·1 answer
  • (a) Determine the required delta-v, Ave, to the nearest m/s, to reach a circular 500 km altitude equatorial prograde (eastward)
    5·1 answer
  • PLEASE HELP
    6·2 answers
  • A photon of wavelength 0.99235 nm strikes a free electron that is initially at rest. the photon is scattered straight backward.
    8·1 answer
  • 7. A ball of mass m makes a head-on elastic collision with a second ball (at rest) and rebounds with a speed equal to 0.450 its
    6·1 answer
  • A 2.0-kg cart is rolling along a frictionless, horizontal track towards a 1.8-kg cart that is held initially at rest. The carts
    9·1 answer
  • How much thermal energy is required to raise the temperature of a<br> 55-g glass ball by 15 °C?
    7·1 answer
  • American space pilots were called astronauts. What were soviet space pilots called?.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!