Answer:
y = 2cos5x-9/5sin5x
Step-by-step explanation:
Given the solution to the differential equation y'' + 25y = 0 to be
y = c1 cos(5x) + c2 sin(5x). In order to find the solution to the differential equation given the boundary conditions y(0) = 1, y'(π) = 9, we need to first get the constant c1 and c2 and substitute the values back into the original solution.
According to the boundary condition y(0) = 2, it means when x = 0, y = 2
On substituting;
2 = c1cos(5(0)) + c2sin(5(0))
2 = c1cos0+c2sin0
2 = c1 + 0
c1 = 2
Substituting the other boundary condition y'(π) = 9, to do that we need to first get the first differential of y(x) i.e y'(x). Given
y(x) = c1cos5x + c2sin5x
y'(x) = -5c1sin5x + 5c2cos5x
If y'(π) = 9, this means when x = π, y'(x) = 9
On substituting;
9 = -5c1sin5π + 5c2cos5π
9 = -5c1(0) + 5c2(-1)
9 = 0-5c2
-5c2 = 9
c2 = -9/5
Substituting c1 = 2 and c2 = -9/5 into the solution to the general differential equation
y = c1 cos(5x) + c2 sin(5x) will give
y = 2cos5x-9/5sin5x
The final expression gives the required solution to the differential equation.
<span>If you know the Linear pair Theorem, the converse can be easily obtained by switching the condition and the conclusion.
For example,
If it is raining, then the outside is wet.
Converse: If the outside is wet, then it is raining. (It is not always true.)</span>
Answer:
25.67
Step-by-step explanation:
10 to the power of 4 is 10,000.
That means we have to do 10,000 divided by 389.5, getting 25.67
Plz Brainliest, need 4 more to get to Expert :)
Theoretically 10 because the 50/50 chance realistically though you'll get more or less