Answer:
5/2
Step-by-step explanation:
So first of all 1/log_3(4) can be written as log_4(3)...
So everything is base 4 except the log_8(x^3)...
We can play with this to get it so that the base is 4.
Let y=log_8(x^3) then 8^y=x^3
Rewrite 8 as 4^(3/2) so we have
4^(3/2 *y)=x^3
Now rewriting in log form gives: log_4(x^3)=3/2*y
Then solving that for y gives 2/3*log_4(x^3) or log_4(x^2)... let's put it back into the equation:
log_4(x^2+5x)-log_4(x^2)=log_4(3)
log_4((x^2+5x)/x^2)=log_4(3)
Set insides equal:
(x^2+5x)/x^2=3
Cross multiply:
x^2+5x=3x^2
Subtract 3x^2 on both sides:
-2x^2+5x=0
Factor
-x(2x-5)=0
So solutions are 0 and 5/2.
We have to verify these...
0 isn't going to work because we can't do log of 0
it makes x^2+5x 0 and x^3 0
The only solution is 5/2.