A baseball traveling at 100 mph has more kinetic energy than a baseball traveling at 50 mph because the kinetic energy = 1/2 x mass x velocity. Since the baseballs should have the same mass, the velocity is what will determine which ball has more kinetic energy. Since the 100 mph baseball has a higher velocity than the 50 mph baseball, it has more kinetic energy.
The answers are A and D.
Engine oil reacts with rubber, changing its properties and causing it to expand. This will compromise rubber seals in the brake system and lead to a failure.
Weight = (mass) x (gravity)
Acceleration of gravity on Earth = 9.8 m/s²
Weight on Earth = (mass) x (9.8 m/s²)
Divide each side by (9.8 m/s²): Mass = (weight) / (9.8 m/s²)
Mass = (650 N) / (9.8 m/s²)
Mass = 66.33 kg (rounded)
Answer: So, if the wavelength of a light wave is shorter, that means that the frequency will be higher because one cycle can pass in a shorter amount of time. ... That means that longer wavelengths have a lower frequency. Conclusion: a longer wavelength means a lower frequency, and a shorter wavelength means a higher frequency!
Answer:
7.1 m/s
Explanation:
First, find the time it takes for the fish to reach the water.
Given in the y direction:
Δy = 6.1 m
v₀ = 0 m/s
a = 9.8 m/s²
Find: t
Δy = v₀ t + ½ at²
6.1 m = (0 m/s) t + ½ (9.8 m/s²) t²
t = 1.12 s
Next, find the velocity needed to travel 7.9 m in that time.
Given in the x direction:
Δx = 7.9 m
a = 0 m/s²
t = 1.12 s
Find: v₀
Δx = v₀ t + ½ at²
7.9 m = v₀ (1.12 s) + ½ (0 m/s²) (1.12 s)²
v₀ = 7.1 m/s