Answer:
See Explanation Below
Explanation:
This question is incomplete.
I'll answer this question on general terms. You'll get your result if you apply the steps I'll highlight below.
To start with; what's Ampere law;
It states that for any closed loop path, the sum of the length elements times the magnetic field in the direction of the length element is equal to the permeability times the electric current enclosed in the loop.
The simple translation of this law is that, the sum of current in the close loop gives us the desired result.
Rephrasing your question;
Three currents, (I1 = +3A, I2 = +4A and I3 = -5A) are passing through a surface bounded by a closed path. The currents have different values and directions. According to Ampere’s law, what is the value of I on the right side of this equation?
First, we take note of the signs in front of the given currents.
The negative sign in front of I3 means that; it is moving in opposite direction of I1 and I2.
To calculate the value of I.
The value of I is the sum of the three currents:
i.e. 3A + 4A - 5A
I = 2 A
Explanation:
According to the energy conservation,



= 
= 
v = 
= 
Formula for distance from the orbit is as follows.
S = 
= 
= 
Now, relation between time and distance is as follows.
T = 

or, f =
=
= 
Thus, we can conclude that the orbital frequency for an electron and a positron that is 1.50 apart is
.
Answer:
v = 2917.35 m/s
Explanation:
let Fc be the centripetal force avting on the satelite , Fg is the gravitational force between mars and the satelite, m is the mass of the satelite and M is the mass of mars.
at any point in the orbit the forces acting on the satelite are balanced such that:
Fc = Fg
mv^2/r = GmM/r^2
v^2 = GM/r
v = \sqrt{GM/r}
= \sqrt{(6.6708×10^-11)(6.38×10^23)/(3.38×10^6 + 1.62×10^6)}
= 2917.35 m/s
Therefore, the orbital velocity of the satelite orbiting mars is 2917.35 m/s.
It's the node of the standing wave.
B if earth had no atmosphere a baseball would fall towards earth at a faster rate