Answer:
Fr = 26.83 [N]
Explanation:
To solve this problem we must use the Pythagorean theorem, since the forces are vector quantities, that is, they have magnitude and density. Therefore the Pythagorean theorem is suitable for the solution of this problem.
![F_{r}=\sqrt{(12)^{2}+(24)^{2} } \\F_{r}=26.83[N]](https://tex.z-dn.net/?f=F_%7Br%7D%3D%5Csqrt%7B%2812%29%5E%7B2%7D%2B%2824%29%5E%7B2%7D%20%20%7D%20%5C%5CF_%7Br%7D%3D26.83%5BN%5D)
Answer:
Impedance increases for frequencies below resonance and decreases for the frequencies above resonance
Explanation:
See attached file
Explanation:
A complex machine is a machine made up of two or more simple machines that make your work easier to do. There are six simple machines from which all complex machines are made. They include: The lever. The inclined plane
Answer:
775.48 W
Explanation:
given,
diameter of disk = 0.6 cm
length of the disk = 0.4 m
T₁ = 450 K T₂ = 450 K T₃ = 300 K
= 1.33
now,
the value of view factor (F₁₂)corresponding to 1.33
F₁₂ = 0.265
F₁₃ = 1 - 0.265 = 0.735
now,
net rate of radiation heat transfer from the disk to the environment:

= 2 F₁₃ A₁ σ (T₁⁴ - T₃⁴)
= 2 x 0.735 x π x (0.3)² x (5.67 x 10⁻⁸ W/m²) (450⁴ - 300⁴)
= 775.48 W
Net radiation heat transfer from the disks to the environment = 775.48 W
I believe the answer should be D