Answer:
Fy=107.2 N
Explanation:
Conceptual analysis
For a right triangle :
sinβ = y/h formula (1)
cosβ = x/h formula (2)
x: side adjacent to the β angle
y: opposite side of the β angle
h: hypotenuse
Known data
h = T = 153.8 N : rope tension
β= 44.2°with the horizontal (x)
Problem development
We apply the formula (1) to calculate Ty : vertical component of the rope force.
sin44.2° = Ty/153.8 N
Ty = (153.8 N ) *(sen44.2°)= 107.2 N directed down
for equilibrium system
Fy= Ty=107.2 N
Fy=107.2 N upward component of the force acting on the stake
The change in velocity is 5m/s which added to the initial 3m/s makes the final velocity 8m/s
Distance = (3*5) + (1/2*1*5^2)= 15+12.5= 27.5m
Answer: a.) Roughness of the surfaces in contact with each other .
Higher the roughness of surfaces in contact with each other, greater is the friction between bodies. Force of friction will be less between smooth surfaces.
b.) Weight of the sliding/rolling body: greater the weight of the moving body on the surface, more is the force of friction on the body by the surface.
I hope this helps
To solve this problem it is necessary to apply the concepts related to the law of Malus which describe the intensity of light passing through a polarizer. Mathematically this law can be described as:

Where,
Indicates the intensity of the light before passing through the polarizer
I = Resulting intensity
= Indicates the angle between the axis of the analyzer and the polarization axis of the incident light
From the law of Malus when the light passes at a vertical angle through the first polarizer its intensity is reduced by half therefore

In the case of the second polarizer the angle is directly 60 degrees therefore



In the case of the third polarizer, the angle is reflected on the perpendicular, therefore, its angle of index would be

Then,



Then the intensity at the end of the polarized lenses will be equivalent to 0.09375 of the initial intensity.