1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vladimir1956 [14]
3 years ago
7

How do you change a improper fraction to a mixed number?

Mathematics
1 answer:
Dima020 [189]3 years ago
6 0
Divide the numerator by denominator
23÷4=5 (3/4)
You might be interested in
A+b=180<br> A=-2x+115<br> B=-6x+169<br> What is the value of B?
natulia [17]
The answer is:  " 91 " .   
___________________________________________________
                    →    " B = 91 " .
__________________________________________________ 

Explanation:
__________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  
_____________________________________________________
METHOD 1)
_____________________________________________________
Solve for "x" ; and then plug the solved value for "x" into the expression given for "B" ; to  solve for "B"
_____________________________________________________

(115 − 2x) + (169 − 6x) = 

  115 − 2x + 169 − 6x = ?

→ Combine the "like terms" ;  as follows:

      + 115 + 169 = + 284 ; 

 − 2x − 6x = − 8x ; 
_________________________________________________________
And rewrite as:

 " − 8x + 284 " ; 
_________________________________________________________
   →  " - 8x + 284 = 180 " ; 

Subtract:  "284" from each side of the equation:

  →  "  - 8x + 284 − 284 = 180 − 284 " ; 

to get:

 →  " -8x = -104 ; 

Divide EACH SIDE of the equation by "-8 " ; 
    to isolate "x" on one side of the equation; & to solve for "x" ; 

→ -8x / -8 = -104/-8 ; 

→  x = 13
__________________________________________________________
Now, to find the value of "B" :
__________________________________________________________
  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ;  

↔  B = 169 − 6x ;  

         = 169 − 6(13) ;   ===========> Plug in our "solved value, "13",  for "x" ;

         = 169 − (78) ; 

         = 91 ;

   B   = " 91 " .
__________________________________________________
The answer is:  " 91 " . 
____________________________________________________
     →     " B = 91 " . 
____________________________________________________
Now;  let us check our answer:
____________________________________________________
               →   A + B = 180 ;  
____________________________________________________
Plug in our "solved answer" ; which is "91", for "B" ;  as follows:
________________________________________________________

→  A + 91 = ? 180? ;  

↔  A = ? 180 − 91 ? ; 

→  A = ?  -89 ?  Yes!
________________________________________________________
→  " A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

Plug in our solved value for "x"; which is: "13" ; 

" A = 115 − 2x " ; 

→  A = ? 115 − 2(13) ? ;

→  A = ? 115 − (26) ? ; 

→  A = ? 29 ? Yes!
_________________________________________________ 
METHOD 2)
_________________________________________________
Given:  
__________________________________________________
    "  A +  B = 180 " ;

  "A =  -2x + 115 " ;   ↔  A =  115 − 2x ;  

  "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→  Solve for the value of "B" :
_______________________________________________________
 A + B = 180 ;  

→ B = 180 − A ; 

→ B = 180 − (115 − 2x) ; 

→ B = 180 − 1(115 − 2x) ;  ==========> {Note the "implied value of "1" } ; 
__________________________________________________________
Note the "distributive property" of multiplication:__________________________________________________  a(b + c)  = ab +  ac ;  <u><em>AND</em></u>:
  a(b − c)  = ab − ac .________________________________________________________
Let us examine the following part of the problem:
________________________________________________________
              →      " − 1(115 − 2x)  " ; 
________________________________________________________

→  "  − 1(115 − 2x) " = (-1 * 115) − (-1 * 2x) ;

                                =  -115 − (-2x) ;
                         
                                =  -115  +  2x ;        
________________________________________________________
So we can bring down the:  " {"B = 180 " ...}"  portion ; 

→and rewrite:
_____________________________________________________

→  B = 180 − 115 + 2x ; 

→  B = 65 + 2x ; 
_____________________________________________________
Now;  given:   "B = - 6x + 169 " ;  ↔  B = 169 − 6x ; 

→ " B =  169 − 6x  =  65 + 2x " ; 
______________________________________________________
→  " 169 − 6x  =  65 + 2x "

Subtract "65" from each side of the equation;  & Subtract "2x" from each side of the equation:

→  169 − 6x − 65 − 2x  =  65 + 2x − 65 − 2x ; 

to get:

→   " - 8x + 104 = 0 " ;
 
Subtract "104" from each side of the equation:

→   " - 8x + 104 − 104 = 0 − 104 " ;

to get: 

→   " - 8x = - 104 ;

Divide each side of the equation by "-8" ; 
   to isolate "x" on one side of the equation; & to solve for "x" ; 

→  -8x / -8  = -104 / -8 ; 

to get:

→  x =  13 ; 
______________________________________________________

Now, let us solve for:  " B " ;  → {for which this very question/problem asks!} ; 

→  B = 65 + 2x ;  

Plug in our solved value, " 13 ",  for "x" ; 

→ B = 65 + 2(13) ; 

        = 65 + (26) ;  

→ B =  " 91 " .
_______________________________________________________
Also, check our answer:
_______________________________________________________
Given:  "B = - 6x + 169 " ;   ↔  B = 169 − 6x = 91 ; 

When "x  = 13 " ; does: " B = 91 " ? 

→ Plug in our "solved value" of " 13 " for "x" ;

      → to see if:  "B = 91" ; (when "x = 13") ;

→  B = 169 − 6x ; 

         = 169 − 6(13) ; 

         = 169 − (78)______________________________________________________
→ B = " 91 " . 
______________________________________________________
6 0
2 years ago
Which one should I choose
shutvik [7]

Answer:

-32

Step-by-step explanation:

((−4)(4))(2)

=−32

8 0
2 years ago
Read 2 more answers
Distribute! only 5 problems!
Dominik [7]

Answer:

ok

Step-by-step explanation:

4 0
2 years ago
What is the product of -2x^3+x-5 and x^3-3x-4 ? (a) Show your work
saul85 [17]

Answer:

-3x3 - 2x - 4

Step-by-step explanation:

 ((((2•(x3))+x)-5x3)-3x)-4

 (((2x3 +  x) -  5x3) -  3x) -  4

Pulling out like terms :

4.1     Pull out like factors :

  -3x3 - 2x - 4  =   -1 • (3x3 + 2x + 4)

Polynomial Roots Calculator :

4.2    Find roots (zeroes) of :       F(x) = 3x3 + 2x + 4

Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  3  and the Trailing Constant is  4.

The factor(s) are:

of the Leading Coefficient :  1,3

of the Trailing Constant :  1 ,2 ,4

Let us test ....

  P    Q    P/Q    F(P/Q)     Divisor

     -1       1        -1.00        -1.00    

     -1       3        -0.33        3.22    

     -2       1        -2.00        -24.00    

     -2       3        -0.67        1.78    

     -4       1        -4.00        -196.00    

     -4       3        -1.33        -5.78    

     1       1        1.00        9.00    

     1       3        0.33        4.78    

     2       1        2.00        32.00    

     2       3        0.67        6.22    

     4       1        4.00        204.00    

     4       3        1.33        13.78    

Polynomial Roots Calculator found no rational roots

Final result :

 -3x3 - 2x - 4

Processing ends successfully

plz mark me as brainliest :)

8 0
3 years ago
Help with question 24. Please provide explanation! Big points
DerKrebs [107]

Answer:

4/3

Step-by-step explanation:

-3y + 4x = -6

-3y = -6 -4y

slove for Y

y = -6/-3 -4/-3 x

Y = -2 +4/3x

Y = 4/3 x -2

Y = 4/3 x -2

so slope or gradient is coefficient of x

4/3 is gradient.

6 0
3 years ago
Read 2 more answers
Other questions:
  • Which number is the best approximate of square root of 500 to the nearest tenth
    11·1 answer
  • Callie read for 4 hours last week. Luis read 6 times as long. Write an equation to show how long Luis read.
    15·2 answers
  • Given f(x)=-x+2f(x)=−x+2, find f(-1)f(−1).
    8·1 answer
  • Could -2 be used to rewrite 32
    12·2 answers
  • The length of<br> TJ is 10 inches and mJMB is 225
    14·1 answer
  • The length of a rectangle is represented by (6x − 2), and the width is represented by (x − 1). Which expression best represents
    9·2 answers
  • Suppose that the number of gallons of milk sold per day at a local supermarket are normally distributed with mean and standard d
    10·1 answer
  • Find mZXZY<br> (8x - 1)<br> (5x + 11)
    13·1 answer
  • PLEASE HELP!!!! MATH QUESTION!!!!
    14·1 answer
  • NEED HELP ASAP pls help right now!!! Pleeeease
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!