Answer:
y>4
Step-by-step explanation:
8y+9>41
subtract 9
8y>32
divide by 8
y>4
Answer:
No.
Step-by-step explanation:
Well, is the points (1, -9) does satisfy the equation y = 3x - 6. Then, substituting the values of x, and, y, into the equation y = 3x - 6, we should get a true equation.
y = 3x - 6
-9 = 3 * 1 - 6
-9 = 3 - 6
-9 = -3.
So, the points (1, -9) does not satisfy the equation y = 3x - 6.
Answer:
The arcs are drawn to find a point on the bisecting ray. If the arcs are the same width, it makes sure that they are equidistant from the points on the rays of the angle. This causes the point to be on the bisecting ray.
Step-by-step explanation:
Bisection of an angle implies dividing the angle into two equal parts. The ray that divides the angle is called a bisector.
The hunter should use the same radius or width to draw the two arcs, using points P and Q as the center interchangeably, so that they would intersect at an equidistant point to P and Q. The point of intersection lies on the bisecting ray of the angle.
Find the possible rational roots and use synthetic division to find the first zero.
I chose x=1 (which represents the factor "x-1")
1║2 -7 -13 63 -45
║ 2 -5 -18 45
2 -5 -18 45 0
(x-1) is a factor, (2x³ - 5x² - 18x + 45) is the other factor.
Use synthetic division on the decomposed polynomial to find the next zero.
I chose x = 3 (which represents the factor "x-3")
3║2 -5 -18 45
║ 6 3 -45
2 1 -15 0
Using synthetic division, we discovered that (x-1), (x-3), & (2x² + x -15) are factors. Take the new decomposed polynomial (2x² + x -15) and find the last two factors using any method.
Final Answer: (x-1)(x-3)(x+3)(2x-5)
For this case we have a direct variation of the form:

Where,
- <em>k: proportionality constant
</em>
We must find the value of k.
For this, we use the following data:

Therefore, replacing values we have:

Rewriting:

Clearing the value of k we have:

Therefore, the direct variation equation is given by:

Answer:
The quadratic variation equation for the relatonship is:
