Answer:
A. 66.0 m/s downwards
Explanation:
The Tower has a height of 444m
The book is dropped ,finding the velocity of the book 222m above the ground, means the book will be on air for a height of 222 m .
Apply the formula for free fall in a horizontal projection as;
h= u²×sin²∅ /2g where
h= maximum height =222m
g= acceleration due to gravity =9.81 m/s²
∅ = projectile angle = 0
u = velocity of the book
Applying the formula as ;
h= u²×sin²∅ /2g
222 = u²/2*9.81
222*19.62 = u²
4355.64 = u²
√4355.64 = u
65.99 m/s = u
66 m/s downwards
Mars Global Surveyors (MGS) and later orbiters found the following minerals on the Martian surface;
- Carbonate
- Sulfates
- Iron oxide
The Mars Global Surveyors (MGS) and later orbiters suggest that the Martian crust contains a higher percentage of volatile elements such as Sulphur and chlorine than the Earth's crust does.
These scientists also conclude that the most abundant chemical elements in the Martian crust are those found in Igneous rock.
These elements include the following;
- Silicon,
- Oxygen,
- Iron,
- Magnesium,
- Aluminum,
- Calcium, and
- Potassium.
They also, suggest that hydrogen is found in ice (water) while carbon is found in carbon dioxide and carbonates.
From the given options the minerals found in Martian surface include;
- Phyllosilicates ------ these are sheet of silicate minerals
- Carbonate
- Sulfates
- iron oxide
Learn more here: brainly.com/question/20470323
Homosapiens I think? I’m not sure but I’m 30% sure
The satellite with more mass will definitely have a higher speed. The correct option among all the options that are given in the question is the first option. Although the satellite having more mass should have a larger mass difference to have a noticeable speed change. Otherwise it would be hard to detect the speed change. Also we know that
orbit speed = proportional to square root[(Mass of Earth + Mass of Satellite)/orbit radius]. This explains the answer. <span />
The answer for this question is acceleration