Answer:
Yes, dimensionally the equation is correct.
Explanation:
This equation is the kinematic equation for uniformly accelerated motion, then we study the units of each member to conclude whether it is dimensionally correct.
vi = initial velocity [m/s]
a = acceleration [m/s^2]
t = time [s]
v = final velocity
therefore we have:
[m/s] + [m/s^2]*[t^2], the second term now is m/s
[m/s] + [m/s] = [m/s]
So the analysis is correct.
Answer:
<h3>The answer is 161 m</h3>
Explanation:
To find the distance covered we use the formula
<h3>distance = velocity × time</h3>
From the question
velocity = 7 m/s
time = 23 s
We have
distance = 7 × 23
We have the final answer as
<h3>161 m</h3>
Hope this helps you
C. The flow of energy from one point to another.
Answer:
The question is incomplete, the complete question is "A car drives on a circular road of radius R. The distance driven by the car is given by d(t)= at^3+bt [where a and b are constants, and t in seconds will give d in meters]. In terms of a, b, and R, and when t = 3 seconds, find an expression for the magnitudes of (i) the tangential acceleration aTAN, and (ii) the radial acceleration aRAD3"
answers:
a.
b. 
Explanation:
First let state the mathematical expression for the tangential acceleration and the radial acceleration.
a. tangential acceleration is express as

since the distance is expressed as

the derivative is the velocity, hence

hence when we take the drivative of the velocity we arrive at
b. the expression for the radial acceleration is expressed as

Answer:
Explanation:
In a collision, there is a force on both objects that causes an acceleration of both objects; the forces are equal in magnitude and opposite in direction. When you hit a drum with a drumstick, there is a collision. The force both objects release causes the drumstick to bounce on the drum