Hello!
Use the formula:
M = k * p
Data:
M = Mechanic energy
k = Kinetic energy
p = Potencial energy
Descomposing:
M = (0,5*mv²) + (mgh)
Replacing:
M = (0,5 * 59,6 kg * (23,4 m/s)²) + (59,6 kg * 9,81 m/s² * 44,6 m)
M = 16317,28 J + 26076,54 J
M = 42393,82 J
The mechanic energy is <u>42393,82 Joules.</u>
- The data for the first part of the experiment support the first hypothesis.
- As the force applied to the cart increased, the acceleration of the cart increased.
- Since the increase in the applied force caused the increase in the cart's acceleration, force and acceleration are directly proportional to each other, which is in accordance with Newton's second law.
When we state something about the results on the basis whether the observed data supports the original hypothesis, we say that we are concluding the results.
What is the relationship between force and acceleration based on Newton's 2nd law?
Newton's second law of motion can be formally stated as follows: The acceleration of an object as produced by a net force is directly proportional to the magnitude of the net force, in the same direction as the net force, and inversely proportional to the mass of the object.
Learn more about Newton's second law of motion brainly.com/question/13447525
#SPJ4
Answer:
1- For the track B. The potential energy is the same for the two cars, but because of the slope of the track, the car B earn kinetic energy faster. The gravitation acceleration of the cars will be g•sinθ, and the angle of the track B will have a bigger value for sinθ
2- The conservation of energy applies because the roller coaster is a closed track. When a car climb the track, it earn GPE, which is given by mgh, when it get down in the track, it transform GPE in KE, which is given in 1/2mv².
3-
Position of car (m) GPE KE GPE + KE
top (30m) 60000 0 60000
bottom (0m) 0 60000 60000
halfway down (15m) 30000 30000 60000
three-quarters way down 15000 45000 60000
use F = ma
F : force m : mass a : acceleration
so
f = 5kg * 20 m/s2 = 100 N