Answer:
Sample mean from population A has probably more accurate estimate of its population mean than the sample mean from population B.
Step-by-step explanation:
To yield a more accurate estimate of the population mean, margin of error should be minimized.
margin of error (ME) of the mean can be calculated using the formula
ME=
where
- z is the corresponding statistic in the given confidence level(z-score or t-score)
- s is the standard deviation of the sample (or of the population if it is known)
for a given confidence level, and the same standard deviation, as the sample size increases, margin of error decreases.
Thus, random sample of 50 people from population A, has smaller margin of error than the sample of 20 people from population B.
Therefore, sample mean from population A has probably more accurate estimate of its population mean than the sample mean from population B.
Answer:
Approximately 22.97 years
Step-by-step explanation:
Use the equation for continuously compounded interest, which uses the exponential base "e":

Where P is the principal (initial amount of the deposit - unknown in our case)
A is the accrued value (value accumulated after interest is compounded), in our case it is not a given value but we know that it triples the original deposit (principal) so we write it as: 3 P (three times the principal)
k is the interest rate : 5% which translates into 0.05
and t is the time in the savings account to triple its value (what we need to find)
The formula becomes:

To solve for "t" we divide both sides of the equation by P (notice it cancels P everywhere), and then to solve for the exponent "t" we use the natural logarithm function:



If two angles are supplementary, their sum equals 180 degrees
(-1,-4) this is saying that when x=-1, y=-4. Plugging it into the line equation y=4x gives

Which is correct.
I can answer it but what’s the end part 15562