Answer:
1. All real numbers
2. All real numbers except y = 0
3. All real numbers except x = -7
4. All real numbers except b = 10
Step-by-step explanation:
For any function to be defined at a particular value, it should not be <em>approaching to a value </em>
<em> or it should not give us the </em>
<em> (zero by zero) form </em> when the input is given to the function.
The value of function will depend on the denominator.
Now, let us consider the given functions one by one:
1. 5y+2
Here denominator is 1. So, it can not attain a value
or
<em> (zero by zero) form </em>
So, for all real numbers, the function is defined.
![2.\ \dfrac{18}{y}](https://tex.z-dn.net/?f=2.%5C%20%5Cdfrac%7B18%7D%7By%7D)
At y = 0, the value
![At\ y =0, \dfrac{18}{y} \rightarrow \infty](https://tex.z-dn.net/?f=At%5C%20y%20%3D0%2C%20%20%5Cdfrac%7B18%7D%7By%7D%20%5Crightarrow%20%5Cinfty)
So, the given function is <em>defined for all real numbers except y = 0</em>
<em></em>
<em></em>
<em></em>
Let us consider denominator:
x + 7 can be zero at a value x = -7
![At\ x =-7, \dfrac{1}{x+7} \rightarrow \infty](https://tex.z-dn.net/?f=At%5C%20x%20%3D-7%2C%20%20%5Cdfrac%7B1%7D%7Bx%2B7%7D%20%5Crightarrow%20%5Cinfty)
So, the given function is <em>defined for all real numbers except x = -7</em>
<em></em>
![4.\ \dfrac{2b}{10-b}](https://tex.z-dn.net/?f=4.%5C%20%5Cdfrac%7B2b%7D%7B10-b%7D)
Let us consider denominator:
10-b can be zero at a value b = 10
![At\ b =10, \dfrac{2b}{10-b} \rightarrow \infty](https://tex.z-dn.net/?f=At%5C%20b%20%3D10%2C%20%20%5Cdfrac%7B2b%7D%7B10-b%7D%20%5Crightarrow%20%5Cinfty)
So, the given function is <em>defined for all real numbers except b = 10</em>
<em></em>