Answer:
Both answer are "B" im pretty sure. :)
Step-by-step explanation:
Answer:
D
Step-by-step explanation:
Answer:
The age of the horse, in human years, when Alex was born can be determined by simply deducting the Current age of Alex from the Current age of the horse in human years.
Therefore, the age of the horse, in human years, when Alex was born was 42 years.
Step-by-step explanation:
Current age of Alex = 8
Current age of the horse in human years = 50
Since the age of the horse is already stated in human years, it implies there is no need to convert the age of the horse again.
Therefore, since Alex is a human who was born 8 years ago, the age of the horse, in human years, when Alex was born can be determined by simply deducting the Current age of Alex from the Current age of the horse in human years as follows:
The age of the horse, in human years, when Alex was born = 50 - 8 = 42
Therefore, the age of the horse, in human years, when Alex was born was 42 years.
This can be presented in a table as follows:
Age of Alex Age of the Horse (in human years)
Eight years ago 0 42
Current age 8 50
Answer:
lol okay
Step-by-step explanation:
= 1/2kx2
U = potential energy of a spring at a certain position
k = the spring constant, specific to the spring, with units N/m.
x = distance the spring is stretched or compressed away from equilibrium
Potential Energy: Elastic Formula Questions:
1) A spring, which has a spring constant k = 7.50 N/m, has been stretched 0.40 m from its equilibrium position. What is the potential energy now stored in the spring?
Answer: The spring has been stretched x = 0.40 m from equilibrium. The potential energy can be found using the formula:
U = 1/2kx2
U = 1/2(7.50 N/m)(0.40 m)2
U = 0.60 N∙m
U = 0.60 J