Answer:
you know you really need to watch what you say that comes out of your mouth
Answer:
x=133 y=-25
Step-by-step explanation:
I'll do both ways for you. So let's start with Substitution:
With the sub method, you have to set both equations equal to each other by setting them equal to the same variable. Since there is no coefficient in front of both x's in both equations, that variable will be easiest to solve for.
x + 2y = 83 & x + 5y = 8
Solve for x.
x = 83 - 2y & x = 8 - 5y
Once you have solved for x, set each equation equal to one another and solve for y now.
83 - 2y = 8 - 5y
Isolate all variables to one side:
83 = 8 - 3y
Now subtract the 8 to fully isolate the y variable:
75 = -3y
Divide by -3:
-25 = y Now that you have your first variable, plug it into one of the original equations and solve for x.
x + 2(-25) = 83
x - 50 = 83
x = 133
Now for the Elimination method. For this method you need to get rid of a variable by either subtracting/adding each equation together. Again, since you can subtract and x from both equations, you will be left with only the y variable to solve:
Put each equation on top of one another and subtract:
x + 2y = 83
- (x + 5y = 8)
The x's will cancel out:
(x - x) + (2y - 5y) = (83 - 8)
Simplify:
-3y = 75
Solve for y
y = -25
Then, plug y = -25 into one of the original equations:
x + 5(-25) = 8
Solve for x:
x - 125 = 8
x = 133
Hope this helps!
Answer:
97
Step-by-step explanation:
Answer:
4
Step-by-step explanation:
y inversely proportional to x
y=1k/x
4=k/4
k=4×4
k=16
to find y
y=16/4
y=4
Answer:
<u>The track consumes ≅ 61 liters of fuel every 100 kilometres</u>
Step-by-step explanation:
As we can see in the graph, the total distance that the truck can travel with 500 liters of fuel is ≅ 825 kilometres.
For answering the question properly, we use the Rule of Three Simple, this way:
Kilometres Liters of fuel
825 500
100 x
Solving for x, we have:
825 * x = 500 * 100
825x = 50,000
x = 50,000/825
x = 60.6 liters of fuel (61 rounding to the next whole)
x ≅ 61 liters of fuel
<u>The track consumes ≅ 61 liters of fuel every 100 kilometres</u>