Answer:
C: y+7=2/5(x+4)
Step-by-step explanation:
The point-slope form of the equation of a line with slope m through point (h, k) is ...
y -k = m(x -h)
You are given m=2/5 and (h, k) = (-4, -7). Put these numbers into the form and simplify the signs:
y -(-7) = 2/5(x -(-4)) . . . . . numbers put into the form
y +7 = 2/5(x +4) . . . . . . . signs simplified . . . . matches choice C
Answer:
10.3m
Step-by-step explanation:
area of a rectangle is width times length, so you have to rearrange the equation
55.929 ÷ 5.43 = 10.3
Hi there!
To calculate a discount or a mark-up in the price of a retail item, you need to multiply the given price of the item by the percentage, like so:
1.35 × 0.2 = 0.27
Then you add or subtract as necessary. In your case you would subtract since you are trying to find a discount price.
1.35 - 0.27 = 1.08
So the final price of the product after the discount is $1.08
Your friend, ASIAX
Answer:
y=120
Step-by-step explanation:
Y varies directly as x is written as

introducing a constant
y=kx
<em>from</em><em> </em><em>the</em><em> </em><em>ques</em><em>tion</em><em>,</em><em> </em><em>whe</em><em>n</em><em> </em><em>y</em><em>=</em><em>4</em><em>8</em><em>,</em><em> </em><em> </em><em>x</em><em>=</em><em>6</em>
<em>sub</em><em>stitute</em><em> </em><em>it</em><em> </em><em>in</em><em> </em><em>the</em><em> </em><em>form</em><em>ula</em>
<em>4</em><em>8</em><em>=</em><em>6</em><em>k</em>
<em>making</em><em> </em><em>k</em><em> </em><em>the</em><em> subject</em><em> </em><em>by </em><em>divi</em><em>ding</em><em> </em><em>thr</em><em>ough</em><em> </em><em>by</em><em> </em><em>6</em>
<em>
</em>
k=48/6
k=8
<em>put</em><em> </em><em>the</em><em> </em><em>va</em><em>lue</em><em> </em><em>of</em><em> </em><em>k</em><em> </em><em>in</em><em> </em><em>the </em><em>expression</em><em> </em><em>y</em><em>=</em><em>kx</em>
<em>y</em><em>=</em><em>8</em><em>x</em>
from the question,the value of y when x=15 is given by
y=8×15
y=120.
The Taylor series is defined by:

Let a = 0.
Then its just a matter of finding derivatives and determining how many terms is needed for the series.
Derivatives can be found using product rule:

Do this successively to n = 6.

Plug in x=0 and sub into taylor series:

If more terms are needed simply continue the recursive derivative formula and add to taylor series.