The answer for the following problem is mentioned below.
<u><em>Therefore volume occupied by methane gas is 184.78 × 10^-3 liters </em></u>
Explanation:
Given:
mass of methane(
) = 272 grams
pressure (P) = 250 k Pa =250×10^3 Pa
temperature(t) = 54°C =54 + 273 = 327 K
Also given:
R = 8.31JK-1 mol-1 ,
Molar mass of methane(
) = 16.0 grams
We know;
According to the ideal gas equation,
<u><em>P × V = n × R × T</em></u>
here,
n = m÷M
n =272 ÷ 16
<u><em>n = 17 moles</em></u>
Therefore,
250×10^3 × V = 17 × 8.31 × 327
V = ( 17 × 8.31 × 327 ) ÷ ( 250×10^3 )
V = 184.78 × 10^-3 liters
<u><em>Therefore volume occupied by methane gas is 184.78 × 10^-3 liters </em></u>
<u><em></em></u>
<u><em></em></u>
<u><em></em></u>
<u><em></em></u>
<u><em></em></u>
Answer:
The correct answer is B) HOOCCH2CH2COOH(aq)
Explanation:
Both Ka1 and Ka2 are low, so the acid will dissociate only slightly into HOOCCH2CH2COO- ions and even more slightly into -OOCCH2CH2COO- ions. The concentration of hydronium ions (H₃O⁺) will be consequently low. The species that will be in the highest concentration will be HOOCCH2CH2COOH (the weak acid not dissociated).
The boiling point of plain water is less than the boiling point of both salt and sugar water.
<h3>What is boiling point?</h3>
Boiling point can be defined as the point when the pressure exerted by the surroundings upon a liquid is equal to the pressure exerted by the vapour of the liquid.
The boiling point of plain water is 100°C which increases upon addition of solute substances such as salt and sugar.
But salts are usually made up of ionic bonds while sugar are made up of covalent bonds. This means that more energy would be required to boil salt solution due to its ionic bonds.
Therefore, the boiling point of salt water is highest following sugar water before plain water which is the lowest.
Learn more boiling point here:
brainly.com/question/14008526
#SPJ1
Answer:
Explanation:
It is easier if you convert the kelvin temperature into Celsius degrees:
- ºC = T - 273.15 = 150 - 273.15 = -123.15ºC
Now, you know that that is a very cold temperature. Thus, may be the oxygen is not gas any more but it changed to liquid . . . or solid?
You must search for the boiling point and melting (freezing) point of oxygen in tables or the internet. At standard pressure (about 1 atm) they are:
- Melting point: −218.79 °C,
- Boiling point: −182.962 °C
That means that:
- below -218.79ºC oxygen is solid (not our case).
- between -218.79ºC and -182.962ºC oxygen is liquid (not our case)
- over -182.962ºC oxygen is a gas. This is our case, because -123.15ºC is a higher temperature than -182.962ºC.
Hence, <em>the state of matter of oxygen at 150K</em>, and standard pressure, is gas.