Answer: 4.41 atm
Explanation:
Given that,
Original pressure of oxygen gas (P1) = 5.00 atm
Original temperature of oxygen gas (T1) = 25°C
[Convert 25°C to Kelvin by adding 273
25°C + 273 = 298K
New pressure of oxygen gas (P2) = ?
New temperature of oxygen gas (T2) = -10°C
[Convert -10°C to Kelvin by adding 273
-10°C + 273 = 263K
Since pressure and temperature are given while volume is held constant, apply the formula for Charle's law
P1/T1 = P2/T2
5.00 atm /298K = P2/263K
To get the value of P2, cross multiply
5.00 atm x 263K = 298K x V2
1315 atm•K = 298K•V2
V2 = 1315 atm•K / 298K
V2 = 4.41 atm
Thus, the new pressure inside the canister is 4.41 atmosphere
Answer is: The total energy in the system remains the same as the decrease in chemical energy equals the increase in thermal and radiant energy.
The law of conservation of energy states that the total energy of an isolated system remains constant; energy can neither be created nor destroyed; it can only be transformed or transferred from one form (in this example chemical energy) to another (in this example thermal and radiant energy).
Radiant energy or light is the only kind of energy we can see with our eyes. Light have different wavelenght and different color.
Chemical energy - this type of energy is often found in things like batteries or food.
Since hydrogen bonding is a stronger intermolecular force than van der Waals forces, more energy is required to separate the molecules of ethanol than the molecules of ethane. Thus ethanol has a higher melting point than ethane.
70.0 g. The decomposition of 125 g CaCO3 produces 700 g CaO.
MM = 100.09 56.08
CaCO3 → CaO + CO2
Mass 125 g
a) Moles of CaCO3 = 125 g CaCO3 x (1 mol CaCO3/100.09 g CaCO3)
= 1.249 mol CaCO3
b) Moles of CaO = 1.249 mol CaCO3 x (1 mol CaO/1 mol CaCO3)
= 1.249 mol CaO
c) Mass of CaO = 1.249 mol CaO x (56.08 g CaO/1 mol CaO) = 70.0 g