Answer:
a) 0.0002
b) 0.0057
c) 0.0364
Step-by-step explanation:
Lets start by stating the probabilities of a person belonging to each policy:
Standard: 0.3
Preferred: 0.5
Ultra- Preferred: 0.2
The probability of person belonging to each policy AND dying in the next year:
Standard: 0.3 x 0.015 = 0.0045
Preferred: 0.5 x 0.002 = 0.001
Ultra- Preferred: 0.2 x 0.001 = 0.0002
a) The probability a ultra - preferred policy holder dies in the next year is 0.001. To find the probability of a person being both a ultra - preferred policy holder AND die in the next year is: 0.001 x 0.2= 0.0002
b) The probability is given by adding the probabilities calculated before :
0.0045 + 0.001 + 0.0002 = 0.0057
c) We use the results above again. This is 0.0002 / (0.001 + 0.0045). The answer comes out to be 0.0364
<u>Answer:</u>
Below!
<u>Step-by step explanation:</u>
<u>We know that:</u>
<u>Solution of Question A:</u>
<u>Percent of children: Total children/Total attendance</u>
- => 400/1500
- => 4/15
- => 0.27 (Rounded to nearest hundredth)
- => 0.27 x 100
- => 27%
<u>Hence, the percent of children is about 27%.</u>
<u>Solution of Question B:</u>
<u>Percent of women: Total women/Total attendance</u>
- => 850/1500
- => 85/150
- => 17/30
- => 17/30 x 100
- => 17/3 x 10
- => 170/3
- => 56.67%
<u>Hence, the percent of women is 56.67%.</u>
<u>Solution of Question C:</u>
- 400 + 850 + m = 1500
- => 1250 + m = 1500
- => m = 1500 - 1250
- => m = 250
<u>Percent of men: Total men/Total attendance</u>
- => 250/1500
- => 1/6
- => 0.17 (Rounded to nearest hundredth)
- => 0.17 x 100
- => 17%
<u>Hence, the percent of men is about 17%</u>
Hoped this helped.

It's name is “isosceles triangle”
7/100 = 0.07
0.07 * 12.5 = 0.88
20/100 = 0.2
0.2 * 12.5 = 2.5
2.5 + 0.88 = 3.38
3.38 + 12.50 = 15.88
You spend a total of $15.88.