Answer:
0·95
Explanation:
Given the combined mass of the rider and the bike = 100 kg
Percent slope = 12%
∴ Slope = 0·12
Terminal speed = 15 m/s
Frontal area = 0·9 m²
Let the slope angle be β
tanβ = 0·12
As it attains the terminal speed, the forces acting on the combined rider and the bike must be balanced and therefore the rider must be moving download as the directions of one of the component of weight and drag force will be in opposite directions
The other component of weight will get balance by the normal reaction and you can see the figure which is in the file attached
From the diagram m × g × sinβ = drag force
Drag force = 0·5 × d ×
× v² × A
where d is the density of the fluid through which it flows
is the drag coefficient
v is the speed of the object relative to the fluid
A is the cross sectional area
As tanβ = 0·12
∴ sinβ = 0·119
Let the fluid in this case be air and density of air d = 1·21 kg/m³
m × g × sinβ = 0·5 × d ×
× v² × A
100 × 9·8 ×0·119 = 0·5 × 1·21 ×
× 15² × 0·9
∴
≈ 0·95
∴ Drag coefficient is approximately 0·95
It would be c. As it can’t accelerate faster thus not having a faster velocity so it’s inertia
Answer:
39225J
Explanation:
Given parameters:
Mass of water = 375grams of water
Change in temperature = 25°C
Specific heat capacity of water = 4.184J/g°C
Unknown:
Amount of heat absorbed = ?
Solution:
To solve this problem, we use the expression below:
H = m c Ф
H is the heat absorbed
m is the mass
c is the specific heat capacity
Ф is the change in temperature
Insert the parameters and solve;
H = 375 x 4.184 x (25) = 39225J
Answer: When waves travel from one medium to another the frequency never changes. As waves travel into the denser medium, they slow down and wavelength decreases. Part of the wave travels faster for longer causing the wave to turn. The wave is slower but the wavelength is shorter meaning frequency remains the same.
Explanation: