1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Slav-nsk [51]
3 years ago
6

Select the correct answer.

Physics
1 answer:
Nina [5.8K]3 years ago
3 0

Answer:

Ос.

The spacing between particles increases.

Heat causes greater particle activity, and the particles

are farther apart.

You might be interested in
To understand how to find the velocities of objects after a collision.
trasher [3.6K]

There are some information missing on Part D: Let the mass of object 1 be m and the mass of object 2 be 3m. If the collision is perfectly inelastic, what are the velocities of the two objects after the collision? Give the velocity v_1 of object one, followed by object v_2 of object two, separated by a comma. Express each velocity in terms of v.

Answer: Part A: v_1 = 0; v_2 = v

Part B: v_1 = v_2 = \frac{v}{2}

Part C: v_1 = \frac{v}{3}; v_2 = \frac{4v}{3}

Part D: v_1 = v_2 = \frac{v}{4}

Explanation: In elastic collisions, there no loss of kinetic energy and momentum is conserved. Momentum is determined as p = m.v and kinetic energy as K = \frac{1}{2}m.v^{2}

Conserved means that the amount of initial momentum is equal to the amount of final momentum:

m_{1}.v_{1i} + m_{2}.v_{2i} = m_{1}.v_{1f} + m_{2}.v_{2f}

No loss of energy means that initial kinietc energy is the same as the final kinetic energy:

\frac{1}{2}(m_{1}.v_{1i} + m_{2}.v_{2i}) = \frac{1}{2} (m_{1}.v_{1f} + m_{2}.v_{2f}  )

To determine the final velocities of each object, there are 2 variables and two equations, so working those equations, the result is:

v_{2f} = \frac{2.m_{1} } {m_{1} + m_{2} }.v_{1i}  + \frac{(m_{2} - m_{1})}{m_{1} + m_{2} } . v_{2i}

v_{1f} = \frac{m_{2} - m_{1} }{m_{1} + m_{2} } . v_{1i} + \frac{2.m_{2} }{m_{1} + m_{2} } .v_{2i}

For all the collisions, object 2 is static, i.e. v_{2i} = 0

<u>Part A</u>: Both objects have the same mass (m), v_{1i} = v and collision is elastic:

v_1 = \frac{m_{2} - m_{1}}{m_{1} + m_{2} } . v_{1i}

v_1 = 0

v_2 = \frac{2.m_{1} }{m_{1} + m_{2}}.v_{1i}

v_2 = \frac{2.m}{m+m}.v

v_2 = v

When the masses are the same and there is an object at rest, the object in movement stops and the object at rest has the same same velocity as the object who hit it.

<u>Part B</u>: Same mass but collision is inelastic: An inelastic collision means that after it happens, the two objects has the same final velocity, then:

m_{1}.v_{1i} + m_{2}.v_{2i} = m_{1}.v_{1f} + m_{2}.v_{2f}

m_{1}.v_{1i} = (m_{1}+m_{2}).v_{f}

v_{f} =  \frac{m_{1}.v_{1i}}{m_{1} + m_{2} }

v_1 = v_2 = \frac{m.v}{m+m}

v_1 = v_2 = \frac{v}{2}

<u>Part C:</u> Object 1 is 2m, object 2 is m and elastic collision:

v_1 = \frac{m_{2} - m_{1}}{m_{1} + m_{2} } . v_{1i}

v_1 = \frac{2m - m}{2m + m } . v

v_1 = \frac{v}{3}

v_2 = \frac{2.m_{1} }{m_{1} + m_{2}}.v_{1i}

v_2 = \frac{2.2m}{2m+m}.v

v_2 = \frac{4v}{3}

<u>Part D</u>: Object 1 is m, object is 3m and collision is inelastic:

v_1 = v_2 = v_{f} =  \frac{m_{1}.v_{1i}}{m_{1} + m_{2} }

v_1 = v_2 = \frac{m}{m+3m}.v

v_1 = v_2 = \frac{v}{4}

5 0
3 years ago
Which produces more energy? Nuclear fission or nuclear fission?
erastovalidia [21]

Answer:

Nuclear fission

Explanation:

your so very welcome

4 0
3 years ago
A current exists whenever electric charges move. If ΔQ is the net charge that passes through a surface during a time period Δt,
jeka57 [31]

Answer:

It represents the change in charge Q from time t = a to t = b

Explanation:

As given in the question the current is defined as the derivative of charge.

                                  I(t) = dQ(t)/dt ..... (i)

But if we take the inegral of the equation (i) for the time interval  from t=a to

t =b we get

                                   Q =∫_a^b▒〖I(t)  〗 dt

which shows the change in charge Q from time t = a to t = b. Form here we can say that, change in charge is defiend as the integral of current for specific interval of time.

5 0
3 years ago
Light incident on a lake surface is partly reflected and partly refracted.What is the differences between the reflected ray and
iren2701 [21]

Answer: As per the question, a ray of light is incident on a surface and it is partly reflected and refracted. The incident light is an unpolarised light. The reflected light is partially polarised.

If the angle of incidence becomes equal to the Brester angle (polarising angle), then the reflected light is completely plane polarised.

5 0
3 years ago
Read 2 more answers
If a ball speeds up as it is rolling down a hill, the forces acting on it must be -
VMariaS [17]

Answer:

the forces acting on it must be strong because gravity is pushing the ball down

Explanation:

3 0
3 years ago
Other questions:
  • A 2,000 kg rocket is launched 12 km straight up at a constant acceleration into the sky at which point the rocket is travelling
    9·1 answer
  • Kinetic energy....
    5·1 answer
  • Which sets of data show a wave with the shortest wavelength? A. Speed=100 million m/s and frequency = 50 million Hz. B. Speed=15
    12·1 answer
  • What happens when the inner ear is exposed to very loud noises?
    12·2 answers
  • The fact that the magnetic field generates a force perpendicular to the instantaneous velocity of the particle has implications
    7·1 answer
  • The reactivity of an atom arises primarily from ___.
    9·1 answer
  • A straight, stiff, horizontal wire of length 46 cm and mass 20 g is connected to a source of emf by light, flexible leads. A mag
    10·1 answer
  • If Rojelio starts out at rest, and in 10 s speeds up to 50 m/s, what is his acceleration?
    13·1 answer
  • Why is the restoring force in Hooke's law a negative value?
    12·2 answers
  • In Science, a hypothesis must be _______________.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!