Answer:
As block 1 moves from point A to point B, the work done by gravity on block 2 is equal to the change in the kinetic energy of the two-block system.
Explanation:
As block 2 goes down , work is done by gravity on block 2 . This is converted
into kinetic energy of block 1 and block 2 . Work done by gravity is mgh which can be measured easily . kinetic energy of both the blocks can also be measured.
The package should be dropped <u>678 m</u> short of the target.
A package dropped from a plane which is moving at a speed v, has a horizontal velocity equal to the horizontal velocity of the plane. It has a parabolic trajectory, traversing a horizontal range x while it falls through a vertical height y.
The package has no initial vertical velocity, and it falls through a height y under the action of the acceleration due to gravity g.
Use the equation,

Write an expression for t, the time taken for the package to fall through y.

Substitute 100 m for y and 9.81m/s² for g.

In the time t the package travels a horizontal distance x. The horizontal velocity of the package remains constant, since no force acts along the horizontal direction.
Therefore, the horizontal distance traveled by the package is given by,

If the package is released <u>678m</u> before the target, the package would reach the scientists working in Greenland.
Answer:
So speed of electron will be 
Explanation:
We have given potential difference V = 9.9 KV
Charge on electron 
So energy of electron 
This energy of electron will be equal to kinetic energy of electron
So 


So speed of electron will be 
If you drop an object, it accelerates downward at 9.8 m/s2 (in the absence of air resistance). If instead, you throw it downward, its downward acceleration after release is 9.8 m/s2.
Acceleration is the rate at which an object's velocity with respect to time changes. They are vector quantities and accelerations. The direction of the net force acting on an object determines the direction of its acceleration. Uniform acceleration, non-uniform acceleration, and average acceleration are the three different forms of accelerated motions.
A free-falling object experiences a downward acceleration of 9.8 m/s/s (on Earth). This specific designation is given to the numerical value for an object in free fall because it is such an essential value. The longer an object is in free fall, the faster it descends toward the ground due to gravity. In actuality, an object's velocity rises by 9.8 m/s2, so it reaches 9.8 m/s by the time it begins to fall.
To know more about acceleration refer to: brainly.com/question/14468548
#SPJ4
Answer:
The skidding distance would be doubled
Explanation:
When the truck applies the brakes and slows down, its motion is a uniformly accelerated motion, so its skidding distance can be found by using the suvat equation

where
v = 0 is the final velocity (zero since the truck comes to a stop)
u is the initial velocity
a is the acceleration
s is the skidding distance
The acceleration can also be written as

where F is the force applied by the brakes and m the mass of the truck. Substituting into the previous equation,

We see that the skidding distance is proportional to the mass: therefore, if the mass of the truck is doubled, the skidding distance will double as well.