The hypothetical upper limit to the mass a star can be before it self-destructs due to the massive amount of fusion it would produce is apparently as a result of <u>Eddington luminosity</u>
<h3>What are stars?</h3>
Stars are a fixed luminous point in the sky which is a large and remote incandescent body
So therefore, the hypothetical upper limit to the mass a star can be before it self-destructs due to the massive amount of fusion it would produce is apparently as a result of Eddington luminosity
Learn more about stars:
brainly.com/question/13018254
#SPJ1
Answer:
Explanation:
initial velocity, u = 0
final velocity, v = 60 mph = 26.8 m/s
time t = 10 s
Let a be the acceleration and s be he distance traveled.
Use first equation of motion
v = u + a t
26.8 = 0 + a x 10
a = 2.68 m/s
Use second equation of motion
s = ut + 1/2 at²
s = 0 + 0.5 x 2.68 x 10 x 10
s = 134 m
As, 1 m = 3.28 ft
So, s = 134 x 3.28 ft
s = 439.6 ft
(a) The magnitude of the acceleration of the electron is 5.62 x 10¹³ m/s².
(b) The speed of the electron after the given time is 4.78 x 10⁵ m/s.
<h3>
Acceleration of the electron</h3>
The acceleration of the electron is calculated as follows;
F = qE
ma = qE
a = qE/m
a = (1.6 x 10⁻¹⁹ x 320)/(9.11 x 10⁻³¹)
a = 5.62 x 10¹³ m/s²
<h3>Speed of the electron</h3>
v = at
v = 5.62 x 10¹³ m/s² x 8.50 x 10⁻⁹ s
v = 4.78 x 10⁵ m/s
Learn more about speed here: brainly.com/question/4931057
#SPJ1
<span>So we want to know what happens to the momentum of the ball that rolls down hill and hits a box. So we need to use the law of conservation of momentum which states that the momentum must be conserved. It cant be transformed into inertia or mass. It can only be transferred to other object via some interactions like collisions. So it has to be a. transferred to the box and that is the correct answer. </span>