People have dominant and recessive traits. If there are more dominant traits or the recessive trait just was barely there the parents might not show it while their child could show that recessive trait
Answer:
the equilibrium wage rate is 10 and the equilibrium quantity of labor is 1000 workers
Explanation:
The equilibrium wage rate and the equilibrium quantity of labor are found as the point where the equation of demand intercepts the equation of supply, so the equilibrium quantity of labor is:

15 - (1/200) L = 5 + (1/200) L
15 - 5 = (1/200) L + (1/200) L
10 = (2/200) L
(10*200)/2 = L
1000 = L
Then, the equilibrium wage rate is calculated using either the equation of demand for labor or the equation of supply of labor. If we use the equation of demand for labor, we get:
W = 15 - (1/200) L
W = 15 - (1/200) 1000
W = 10
Finally, the equilibrium wage rate is 10 and the equilibrium quantity of labor is 1000 workers
Complete Question
The complete question is shown on the first uploaded image
Answer:
The maximum emf is 
The emf induced at t = 1.00 s is 
The maximum rate of change of magnetic flux is 
Explanation:
From the question we are told that
The number of turns is N = 44 turns
The length of the coil is 
The width of the coil is 
The magnetic field is 
The angular speed is 
Generally the induced emf is mathematically represented as

Where
is the maximum induced emf and this is mathematically represented as

Where
is the magnetic flux
N is the number of turns
A is the area of the coil which is mathematically evaluated as

Substituting values


substituting values into the equation for maximum induced emf


given that the time t = 1.0sec
substituting values into the equation for induced emf 


The maximum induced emf can also be represented mathematically as

Where
is the magnetic flux and
is the maximum rate at which magnetic flux changes the value of the maximum rate of change of magnetic flux is

Frictional forces act in the direction opposite to the MOTION. That direction could be the same OR opposite to applied force.
-- If you push a loaded heavy wagon from behind, trying to get it going faster, friction is acting against you, opposite to your force.
-- If you push a loaded rolling heavy wagon from in front, trying to make it slow down, friction is acting with you, in the same direction as your force.
-- Opposite to the motion both times.