Answer:
T=26.03 N
Explanation:
Given that
Distance between poles = 12 m
Mass of block m= 4 kg
Sag distance = 5 m
Lets take tension in the clothesline is T.
The component of tension in vertical direction will be T cosθ.
By force balancing
2 T cosθ = 40
here 
θ=39.80°
2 T cos39.8 = 40
T=26.03 N
Although the semi truck certainly has a larger mass, it is not in motion and therefore does not have any momentum. The bicycle however has both mass and velocity and therefore has the larger momentum of the pair.
<span>The velocity would be 54.2 m/s
We would use the equation 1/2mv^2top+mghtop = 1/2mv^2bottom+mghbottom where m is the mass of the bobsled(which can be ignored), vtop/bottom is the velocity of the bobsled at the top or bottom, g is gravity, and htop/bottom is the height of the bobsled at the top or bottom of the hill. Since the velocity of the bobsled at the top of the hill and height at the bottom of the hill are zero, 1/2mv^2top and mghbottom will equal zero. The equation will be mghtop=1/2mv^2bottom. Thus we would solve for v.</span>
Answer:
The final velocity of the bullet is 9 m/s.
Explanation:
We have,
Mass of a bullet is, m = 0.05 kg
Mass of wooden block is, M = 5 kg
Initial speed of bullet, v = 909 m/s
The bullet embeds itself in the block which flies off its stand. Let V is the final velocity of the bullet. The this case, momentum of the system remains conserved. So,

So, the final velocity of the bullet is 9 m/s.