Equation: <span>3b+4b^2-a^3
Given: </span><span>a=3 & b=-5
Plug 3 in for (a) and -5 in for (b):
</span><span>3(-5)+4(-5)^2-(3)^3
</span>
Now follow PEMDAS:
<span>3(-5) + 4(-5)^2 - (3)^3
</span>-15 + 4(-5)^2 - (3)^3
-15 + 100 - (3)^3
-15 + 100 - 27
85 - 27
58
the asnwer is 58.
My buddy said the answer is 12,044 ml.
2/8, 3/12, 4/16, 5/20, 6/24, 7/28, 8/32, 9/36, 10/40, 11/44, 12/48, etc.
Given:

To find:
The number of possible solutions, if the Order of Operations did not exist.
Solution:
We have,

Now,
Case 1:
![[4 + 9 + 16] \div [4 - 8 -(3 \times 5)]=29\div (4 - 8 -15)](https://tex.z-dn.net/?f=%5B4%20%2B%209%20%2B%2016%5D%20%5Cdiv%20%5B4%20-%208%20-%283%20%5Ctimes%20%205%29%5D%3D29%5Cdiv%20%284%20-%208%20-15%29)

Case 2:
![[4 + 9 + 16] \div (4 - 8 -3) \times 5=29\div (-7\times 5)](https://tex.z-dn.net/?f=%5B4%20%2B%209%20%2B%2016%5D%20%5Cdiv%20%20%284%20-%208%20-3%29%20%5Ctimes%20%205%3D29%5Cdiv%20%20%28-7%5Ctimes%205%29)

Case 3:


Many more possibilities are there.
Therefore, there are more than 3 possible solutions.