Answer: a) Independent
b) Independent
c) Dependent
Step-by-step explanation:
Since, If a coin is tossed three times,
Then, total number of outcomes, n(S) = 8
a)
: tails comes up with the coin is tossed the first time;
= { TTT, THH, THT, TTH }
: heads comes up when the coin is tossed the second time.
= { THT, HHH, THH, HHT }
Thus,
⇒
Similarly,
⇒
Since,
= { THH, THT }
![n(E_1\cap E_2) = 2](https://tex.z-dn.net/?f=n%28E_1%5Ccap%20E_2%29%20%3D%202%20)
⇒ ![P(E_1\cap E_2) = \frac{n(E_1\cap E_2)}{n(S)}= \frac{2}{8}=\frac{1}{4}](https://tex.z-dn.net/?f=P%28E_1%5Ccap%20E_2%29%20%3D%20%5Cfrac%7Bn%28E_1%5Ccap%20E_2%29%7D%7Bn%28S%29%7D%3D%20%5Cfrac%7B2%7D%7B8%7D%3D%5Cfrac%7B1%7D%7B4%7D)
Thus,
Therefore,
and
are independent events.
B)
: the first coin comes up tails
= { TTT, THH, THT, TTH }
: two, and not three, heads come up in a row
= { HHT, THH }
Thus,
⇒
Similarly,
⇒
Since,
= { THH }
![n(E_1\cap E_2) = 1](https://tex.z-dn.net/?f=n%28E_1%5Ccap%20E_2%29%20%3D%201%20)
⇒ ![P(E_1\cap E_2) = \frac{n(E_1\cap E_2)}{n(S)}= \frac{1}{8}](https://tex.z-dn.net/?f=P%28E_1%5Ccap%20E_2%29%20%3D%20%5Cfrac%7Bn%28E_1%5Ccap%20E_2%29%7D%7Bn%28S%29%7D%3D%20%5Cfrac%7B1%7D%7B8%7D)
Thus,
Therefore,
and
are independent events.
C)
: the second coin comes up tails;
= { HTH, HTT, TTT, TTH }
: two, and not three, heads come up in a row
= { HHT, THH }
Thus,
⇒
Similarly,
⇒
Since,
= ![\phi](https://tex.z-dn.net/?f=%5Cphi)
![n(E_1\cap E_2) = 0](https://tex.z-dn.net/?f=n%28E_1%5Ccap%20E_2%29%20%3D%200%20)
⇒ ![P(E_1\cap E_2) = 0](https://tex.z-dn.net/?f=P%28E_1%5Ccap%20E_2%29%20%3D%200)
Thus,
Therefore,
and
are dependent events.