Answer:
W ’= 21.78 kg
Explanation:
The expression for weight is
W = m g
let's look for the acceleration of gravity with the universal law of gravitation
F = G m M / r2
F = m (G M / r2)
without comparing the two equations
g’= G M / r2
in that case M = 2 Mo and r = 3 ro
where mo and ro are the mass and radius of the earth
we substitute
g ’= G 2Mo / (3r₀) 2
G ’= 2/9 G Mo / r₀²
g ’= 2/9 g
the weight of the body on this planet is
W ’= m g’
W ’= m 2/9 g
let's calculate
W ’= 2/9 10 9.8
W ’= 21.78 kg
The correct answer is
B. it would move in a line tangent to the circular path
In fact, the centripetal force is the only force that keeps the object in a circular trajectory, pulling the object towards the centre of the circle. When this force is removed, there are no other forces acting on the object, therefore for the law of inertia, the object will continue to move at constant velocity, therefore in the same direction (tangent to the circular path) at constant speed.
Answer:
Mc = 900 Kg
Uc = 28 ms^-1
Md = 70 Kg
Ud = 0
We want Vd
Vc = Vd
This situation is elastic momentum

Answer:
B. physics and engineering
Explanation:
Biomechanics is the study of mechanical laws and living organisms. Hence, it comprises of the interrelationships between physics and engineering.