Answer:
Selling a car and making. a profit of $3,000 is an example of earning income from capital gains.
Step-by-step explanation:
Answer:

Step-by-step explanation:
![\sf{ [ (4 \frac{1}{6} + 2 \frac{1}{3} ) \div 4 \frac{1}{3}] - 1\frac{1}{2} }](https://tex.z-dn.net/?f=%20%5Csf%7B%20%5B%20%284%20%5Cfrac%7B1%7D%7B6%7D%20%20%2B%202%20%5Cfrac%7B1%7D%7B3%7D%20%29%20%20%5Cdiv%204%20%5Cfrac%7B1%7D%7B3%7D%5D%20-%20%201%5Cfrac%7B1%7D%7B2%7D%20%7D)
Convert the mixed numbers into improper fraction
![\longrightarrow{ \sf{ [ ( \frac{25}{6} + \frac{7}{3} ) \div \frac{13}{3}] - \frac{3}{2}}}](https://tex.z-dn.net/?f=%20%5Clongrightarrow%7B%20%5Csf%7B%20%5B%20%28%20%5Cfrac%7B25%7D%7B6%7D%20%20%2B%20%20%5Cfrac%7B7%7D%7B3%7D%20%29%20%5Cdiv%20%20%5Cfrac%7B13%7D%7B3%7D%5D%20-%20%20%5Cfrac%7B3%7D%7B2%7D%7D%7D%20)
Add the fractions : 25 / 6 and 7 / 3
While performing addition or subtraction of unlike fractions, you have to express the given fractions into equivalent fractions of common denominator and add or subtract as we do with like fraction.
To do so, first take the L.C.M of 6 and 3 which results to 6
![\longrightarrow\sf{ [( \frac{25 + 7 \times 2}{6} ) \div \frac{13}{3} ] - \frac{3}{2}}](https://tex.z-dn.net/?f=%20%20%5Clongrightarrow%5Csf%7B%20%5B%28%20%5Cfrac%7B25%20%2B%207%20%5Ctimes%202%7D%7B6%7D%20%29%20%5Cdiv%20%20%5Cfrac%7B13%7D%7B3%7D%20%5D%20-%20%20%5Cfrac%7B3%7D%7B2%7D%7D%20)
![\longrightarrow{ \sf{ [( \frac{25 + 14}{6} ) \div \frac{13}{3} ] - \frac{3}{2} }}](https://tex.z-dn.net/?f=%20%5Clongrightarrow%7B%20%5Csf%7B%20%5B%28%20%5Cfrac%7B25%20%2B%2014%7D%7B6%7D%20%29%20%20%5Cdiv%20%20%5Cfrac%7B13%7D%7B3%7D%20%20%5D%20-%20%20%5Cfrac%7B3%7D%7B2%7D%20%7D%7D)
![\longrightarrow{ \sf{ [ \frac{39}{6} \div \frac{13}{3}] - \frac{3}{2} }}](https://tex.z-dn.net/?f=%20%5Clongrightarrow%7B%20%5Csf%7B%20%5B%20%5Cfrac%7B39%7D%7B6%7D%20%20%5Cdiv%20%20%5Cfrac%7B13%7D%7B3%7D%5D%20-%20%20%5Cfrac%7B3%7D%7B2%7D%20%7D%7D)
Multiply the dividend by the reciprocal of the divisor.
Reciprocal of any number or fraction can be obtained by interchanging the position of numerator and denominator
![\longrightarrow{ \sf{ [ \frac{39}{6} \times \frac{3}{13} ] - \frac{3}{2}}}](https://tex.z-dn.net/?f=%20%5Clongrightarrow%7B%20%5Csf%7B%20%5B%20%20%5Cfrac%7B39%7D%7B6%7D%20%20%5Ctimes%20%20%5Cfrac%7B3%7D%7B13%7D%20%5D%20-%20%20%5Cfrac%7B3%7D%7B2%7D%7D%7D%20)
To multiply one fraction by another, multiply the numerators for the numerator and multiply the denominators for its denominator and reduce the fraction obtained after multiplication into lowest term
![\longrightarrow{ \sf{ [ \frac{39 \times 3}{6 \times 13} ] - \frac{3}{2}}}](https://tex.z-dn.net/?f=%20%5Clongrightarrow%7B%20%5Csf%7B%20%5B%20%20%5Cfrac%7B39%20%5Ctimes%203%7D%7B6%20%5Ctimes%2013%7D%20%5D%20-%20%20%5Cfrac%7B3%7D%7B2%7D%7D%7D%20)
![\longrightarrow{ \sf{ [ \frac{117}{78} ] - \frac{3}{2} }}](https://tex.z-dn.net/?f=%20%5Clongrightarrow%7B%20%5Csf%7B%20%5B%20%20%5Cfrac%7B117%7D%7B78%7D%20%20%5D%20-%20%20%5Cfrac%7B3%7D%7B2%7D%20%7D%7D)

While performing the addition or subtraction of like fractions , you just have to add or subtract the numerator respectively in which the denominator is retained same

Subtract 3 from 3

Divide 0 by 2

Hope I helped!
Best regards!
Answer:
v ≈ 8.5 km/h
Step-by-step explanation:
Since the diameter of the wheel is 3 m the radius will be r = 1.5 m.
Use the radius of the water wheel to find it's circumference C:
[set r = 1.5 m]
⇒ 
⇒
m
One revolution of the water wheel corresponds to
meters so the angular velocity 15 rmp (revolutions per minute) corresponds to:
=
/min
Using this result, the speed of the river in kilometers per hour will be:
×
× 
⇒

⇒
≈
km/h
The equation which represents a system with infinitely many solutions is;
<h3>What system of equations have infinitely many solutions as in the task content?</h3>
The condition for a situation in which case an equation has infinitely many solutions is such that the right hand side and left hand side of the equation are equal.
On this note, it follows that the answer choices which represents the equations with infinitely many solutions is;
Read more on infinitely many solutions;
brainly.com/question/27927692
#SPJ1