Answer:
there is a total of 20 students in the class because 60% of 20 is 12
Step-by-step explanation:
pls answer my recent question :(
d = 3 , a₁₂ = 40 and S
= 7775
In an arithmetic sequence the nth term and sum to n terms are
<h3>• a

= a₁ + (n-1)d</h3><h3>• S

=

[2a + (n-1)d]</h3><h3>
where d is the common difference</h3><h3>a₆ = a₁ + 5d = 22 ⇒ 7 + 5d = 22 ⇒ 5d = 15 ⇔ d = 3</h3><h3>a₁₂ = 7 + 11d = 7 +( 11× 3) = 7 + 33 = 40</h3><h3>S₁₀₀ =

[(2×7) +(99×3)</h3><h3> = 25(14 + 297) = 25(311)= 7775</h3>
Answer: exponential decay
Step-by-step explanation:
Answer:
- vertical scaling by a factor of 1/3 (compression)
- reflection over the y-axis
- horizontal scaling by a factor of 3 (expansion)
- translation left 1 unit
- translation up 3 units
Step-by-step explanation:
These are the transformations of interest:
g(x) = k·f(x) . . . . . vertical scaling (expansion) by a factor of k
g(x) = f(x) +k . . . . vertical translation by k units (upward)
g(x) = f(x/k) . . . . . horizontal expansion by a factor of k. When k < 0, the function is also reflected over the y-axis
g(x) = f(x-k) . . . . . horizontal translation to the right by k units
__
Here, we have ...
g(x) = 1/3f(-1/3(x+1)) +3
The vertical and horizontal transformations can be applied in either order, since neither affects the other. If we work left-to-right through the expression for g(x), we can see these transformations have been applied:
- vertical scaling by a factor of 1/3 (compression) . . . 1/3f(x)
- reflection over the y-axis . . . 1/3f(-x)
- horizontal scaling by a factor of 3 (expansion) . . . 1/3f(-1/3x)
- translation left 1 unit . . . 1/3f(-1/3(x+1))
- translation up 3 units . . . 1/3f(-1/3(x+1)) +3
_____
<em>Additional comment</em>
The "working" is a matter of matching the form of g(x) to the forms of the different transformations. It is a pattern-matching problem.
The horizontal transformations could also be described as ...
- translation right 1/3 unit . . . f(x -1/3)
- reflection over y and expansion by a factor of 3 . . . f(-1/3x -1/3)
The initial translation in this scenario would be reflected to a translation left 1/3 unit, then the horizontal expansion would turn that into a translation left 1 unit, as described above. Order matters.
Answer:
D
Step-by-step explanation:
Converting percent to decimal : 2.2/100 = 0.022
Finding 2.2$ of $75k : 75,000 x 0.022 = $1,650 (also the increase in one year)
Finding how much it was worth after 11 years :
(75,000 x 0.022) x 11 = $18,150 or 1,650 x 11 = $18,150
Now add the product to the regular amount to find out the answer:
75,000 + 18,150 = $93,150 (which is how much it increased after 11 years)