1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ksju [112]
3 years ago
8

Simplify. 17y(2) 19y 172y 34y 19 + y

Mathematics
2 answers:
elena-14-01-66 [18.8K]3 years ago
5 0

17y(2)=(17)(2)(y)=34y

Romashka [77]3 years ago
5 0

Answer:

C. 34y

Step-by-step explanation:

You might be interested in
Help ASAP!!!!!!!!!!!! Show your work!!!!!!!!!!!
Mariulka [41]

Answer:

x = -0.846647 or x = -0.177346 or x = 0.841952 or x = 1.58204

Step-by-step explanation:

Solve for x:

5 x^4 - 7 x^3 - 5 x^2 + 5 x + 1 = 0

Eliminate the cubic term by substituting y = x - 7/20:

1 + 5 (y + 7/20) - 5 (y + 7/20)^2 - 7 (y + 7/20)^3 + 5 (y + 7/20)^4 = 0

Expand out terms of the left hand side:

5 y^4 - (347 y^2)/40 - (43 y)/200 + 61197/32000 = 0

Divide both sides by 5:

y^4 - (347 y^2)/200 - (43 y)/1000 + 61197/160000 = 0

Add (sqrt(61197) y^2)/200 + (347 y^2)/200 + (43 y)/1000 to both sides:

y^4 + (sqrt(61197) y^2)/200 + 61197/160000 = (sqrt(61197) y^2)/200 + (347 y^2)/200 + (43 y)/1000

y^4 + (sqrt(61197) y^2)/200 + 61197/160000 = (y^2 + sqrt(61197)/400)^2:

(y^2 + sqrt(61197)/400)^2 = (sqrt(61197) y^2)/200 + (347 y^2)/200 + (43 y)/1000

Add 2 (y^2 + sqrt(61197)/400) λ + λ^2 to both sides:

(y^2 + sqrt(61197)/400)^2 + 2 λ (y^2 + sqrt(61197)/400) + λ^2 = (43 y)/1000 + (sqrt(61197) y^2)/200 + (347 y^2)/200 + 2 λ (y^2 + sqrt(61197)/400) + λ^2

(y^2 + sqrt(61197)/400)^2 + 2 λ (y^2 + sqrt(61197)/400) + λ^2 = (y^2 + sqrt(61197)/400 + λ)^2:

(y^2 + sqrt(61197)/400 + λ)^2 = (43 y)/1000 + (sqrt(61197) y^2)/200 + (347 y^2)/200 + 2 λ (y^2 + sqrt(61197)/400) + λ^2

(43 y)/1000 + (sqrt(61197) y^2)/200 + (347 y^2)/200 + 2 λ (y^2 + sqrt(61197)/400) + λ^2 = (2 λ + 347/200 + sqrt(61197)/200) y^2 + (43 y)/1000 + (sqrt(61197) λ)/200 + λ^2:

(y^2 + sqrt(61197)/400 + λ)^2 = y^2 (2 λ + 347/200 + sqrt(61197)/200) + (43 y)/1000 + (sqrt(61197) λ)/200 + λ^2

Complete the square on the right hand side:

(y^2 + sqrt(61197)/400 + λ)^2 = (y sqrt(2 λ + 347/200 + sqrt(61197)/200) + 43/(2000 sqrt(2 λ + 347/200 + sqrt(61197)/200)))^2 + (4 (2 λ + 347/200 + sqrt(61197)/200) (λ^2 + (sqrt(61197) λ)/200) - 1849/1000000)/(4 (2 λ + 347/200 + sqrt(61197)/200))

To express the right hand side as a square, find a value of λ such that the last term is 0.

This means 4 (2 λ + 347/200 + sqrt(61197)/200) (λ^2 + (sqrt(61197) λ)/200) - 1849/1000000 = (8000000 λ^3 + 60000 sqrt(61197) λ^2 + 6940000 λ^2 + 34700 sqrt(61197) λ + 6119700 λ - 1849)/1000000 = 0.

Thus the root λ = (-3 sqrt(61197) - 347)/1200 + 1/60 (-i sqrt(3) + 1) ((3 i sqrt(622119) - 4673)/2)^(1/3) + (19 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(622119) - 4673)^(1/3)) allows the right hand side to be expressed as a square.

(This value will be substituted later):

(y^2 + sqrt(61197)/400 + λ)^2 = (y sqrt(2 λ + 347/200 + sqrt(61197)/200) + 43/(2000 sqrt(2 λ + 347/200 + sqrt(61197)/200)))^2

Take the square root of both sides:

y^2 + sqrt(61197)/400 + λ = y sqrt(2 λ + 347/200 + sqrt(61197)/200) + 43/(2000 sqrt(2 λ + 347/200 + sqrt(61197)/200)) or y^2 + sqrt(61197)/400 + λ = -y sqrt(2 λ + 347/200 + sqrt(61197)/200) - 43/(2000 sqrt(2 λ + 347/200 + sqrt(61197)/200))

Solve using the quadratic formula:

y = 1/40 (sqrt(2) sqrt(400 λ + 347 + sqrt(61197)) + sqrt(2) sqrt(347 - sqrt(61197) - 400 λ + 172 sqrt(2) 1/sqrt(400 λ + 347 + sqrt(61197)))) or y = 1/40 (sqrt(2) sqrt(400 λ + 347 + sqrt(61197)) - sqrt(2) sqrt(347 - sqrt(61197) - 400 λ + 172 sqrt(2) 1/sqrt(400 λ + 347 + sqrt(61197)))) or y = 1/40 (sqrt(2) sqrt(347 - sqrt(61197) - 400 λ - 172 sqrt(2) 1/sqrt(400 λ + 347 + sqrt(61197))) - sqrt(2) sqrt(400 λ + 347 + sqrt(61197))) or y = 1/40 (-sqrt(2) sqrt(400 λ + 347 + sqrt(61197)) - sqrt(2) sqrt(347 - sqrt(61197) - 400 λ - 172 sqrt(2) 1/sqrt(400 λ + 347 + sqrt(61197)))) where λ = (-3 sqrt(61197) - 347)/1200 + 1/60 (-i sqrt(3) + 1) ((3 i sqrt(622119) - 4673)/2)^(1/3) + (19 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(622119) - 4673)^(1/3))

Substitute λ = (-3 sqrt(61197) - 347)/1200 + 1/60 (-i sqrt(3) + 1) ((3 i sqrt(622119) - 4673)/2)^(1/3) + (19 (i sqrt(3) + 1))/(3 2^(2/3) (3 i sqrt(622119) - 4673)^(1/3)) and approximate:

y = -1.19665 or y = -0.527346 or y = 0.491952 or y = 1.23204

Substitute back for y = x - 7/20:

x - 7/20 = -1.19665 or y = -0.527346 or y = 0.491952 or y = 1.23204

Add 7/20 to both sides:

x = -0.846647 or y = -0.527346 or y = 0.491952 or y = 1.23204

Substitute back for y = x - 7/20:

x = -0.846647 or x - 7/20 = -0.527346 or y = 0.491952 or y = 1.23204

Add 7/20 to both sides:

x = -0.846647 or x = -0.177346 or y = 0.491952 or y = 1.23204

Substitute back for y = x - 7/20:

x = -0.846647 or x = -0.177346 or x - 7/20 = 0.491952 or y = 1.23204

Add 7/20 to both sides:

x = -0.846647 or x = -0.177346 or x = 0.841952 or y = 1.23204

Substitute back for y = x - 7/20:

x = -0.846647 or x = -0.177346 or x = 0.841952 or x - 7/20 = 1.23204

Add 7/20 to both sides:

Answer: x = -0.846647 or x = -0.177346 or x = 0.841952 or x = 1.58204

3 0
3 years ago
bob needs to mix 2 cups of orange juice concentrate with 3.5 cups of water to make orange juice. bob has 6 cups of concentrate.
zhenek [66]

Answer:

10.5

Step-by-step explanation:

First, divide 6 by 2. You get 3, right? So now you know that you multiply by three to get the answer. 3.5 * 3 will equal 10.5

7 0
2 years ago
Read 2 more answers
The length of a rectangle is 6 in. more than the width. The perimeter of the rectangle is 24 in. Find the dimensions of the rect
klasskru [66]

1. First, let us define the width of the rectangle as w and the length as l.

2. Now, given that the length of the rectangle is 6 in. more than the width, we can write this out as:

l = w + 6

3. The formula for the perimeter of a rectangle is P = 2w + 2l. We know that the perimeter of the rectangle in the problem is 24 in. so we can rewrite this as:

24 = 2w + 2l

4. Given that we know that l = w + 6, we can substitute this into the formula for the perimeter above so that we will have only one variable to solve for. Thus:

24 = 2w + 2l

if l = w + 6, then: 24 = 2w + 2(w + 6)

24 = 2w + 2w + 12 (Expand 2(w + 6) )

24 = 4w + 12

12 = 4w (Subtract 12 from each side)

w = 12/4 (Divide each side by 4)

w = 3 in.

5. Now that we know that the width is 3 in., we can substitute this into our formula for length that we found in 2. :

l = w + 6

l = 3 + 6

l = 9 in.

6. Therefor the rectangle has a width of 3 in. and a length of 9 in.

8 0
3 years ago
I will give Brainiest if you are right
STALIN [3.7K]

Answer:

D. $69,160

Step-by-step explanation:

40,820(10) - 33,904(10) = 408,200 - 339,040 = 69,160

4 0
3 years ago
Simplify 3<br><img src="https://tex.z-dn.net/?f=%203%20%7B%7D%5E%7B2%7D%20" id="TexFormula1" title=" 3 {}^{2} " alt=" 3 {}^{2} "
scoundrel [369]

3^2=9 three to the power of two equals nine

6 0
2 years ago
Other questions:
  • Max's mix mixing oil and gas for his moped to use is 3.75 L of gas in 1.5 L of oil how many liters of gas are used per liter of
    8·1 answer
  • Help is this right !! ASAP
    11·1 answer
  • Help please asap thanks​
    15·1 answer
  • What is 4 divided into 3 1/3
    8·1 answer
  • If P(C)=.29, P(D)=.47 and P(C and )= 0, are the events C and D mutually exclusive? Find P(C or D)
    7·1 answer
  • Find a cubic function with the given zeros. Square root of seven., -Square root of seven., -4 f(x) = x3 + 4x2+ 7x - 28 f(x) = x3
    13·1 answer
  • 3. The product of and<br>29<br>-26<br>3<br>is ...​
    7·1 answer
  • Dominique deposited $3,000 into an account earning simple interest. The interest rate is 2.6%. How much interest will Dominique
    6·1 answer
  • The capacity of cylinder tank is 539 litres . if its height is 1.4m then find the area of base
    8·2 answers
  • Help me please!! This is timed and I’m stuck
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!