If one or more nucleotide pairs are deleted from a DNA strand, this is known as a frameshift mutation
<h3>
Define Frameshift Mutation</h3>
Insertions or deletions in the genome that are not multiples of three nucleotides are referred to as frameshift mutations. They are a particular class of insertion-deletion (indel) alterations that are present in polypeptides' coding sequences. Here, there are no multiples of three in the number of nucleotides that are added to or subtracted from the coding sequence. They may result from really basic alterations like the insertion or deletion of a single nucleotide.
<h3>
Frameshift mutations' effects</h3>
One of the most harmful modifications to a protein's coding sequence is a frameshift mutation. They are quite prone to produce non-functional proteins that frequently interfere with a cell's metabolic processes and result in significant alterations to polypeptide length and chemical makeup. Frameshift mutations can cause the mRNA to stop translating too soon and create an extended polypeptide.
Learn more about Frameshift mutations here:-
brainly.com/question/12732356
#SPJ4
<h3>
Answer:</h3>
52 mm
<h3>
Explanation:</h3>
We are given;
Required to convert it to cm
We are going to use the appropriate conversion factor;
- The units used to measure length include;
Kilometer(km)
10
Hectometer (Hm)
10
Decameter (dkm)
10
Meter(m)
10
Decimeter (dm)
10
Centimeter (cm)
10
Millimeter (mm)
Therefore; the appropriate conversion factor is 10mm/cm
Thus;
5.2 cm will be equivalent to;
= 5.2 cm × 10 mm/cm
= 52 mm
Therefore, the length of magnesium ribbon is 52 mm
The ideal gas law may be written as

where
p = pressure
ρ =density
T = temperature
M = molar mass
R = 8.314 J/(mol-K)
For the given problem,
ρ = 0.09 g/L = 0.09 kg/m³
T = 26°C = 26+273 K = 299 K
M = 1.008 g/mol = 1.008 x 10⁻³ kg/mol
Therefore

Note that 1 atm = 101325 Pa
Therefore
p = 2.2195 x 10⁵ Pa
= 221.95 kPa
= (2.295 x 10⁵)/101325 atm
= 2.19 atm
Answer:
2.2195 x 10⁵ Pa (or 221.95 kPa or 2.19 atm)
Q or the Reaction Quotient is the interaction between the reactants and products in a given chemical reaction. The value of Q should be compared to the value of K (which is the value of the reaction at equilibrium) in order to determine which way the reaction should move to achieve equilibrium.If Q is already equal to K, then this indicates that the reaction is in equilibrium. If Q>K, then the reactants are converted to products; If Q<K, then the products are converted to reactants. Either way, the reaction proceeds to move towards equilibrium after some time.