<u>Answer:</u> The correct option is enough solvent to make 1.00 L of solution
<u>Explanation:</u>
A solution consists of solute and solvent. A solute is defined as the component present in a smaller proportion while the solvent is defined as the component that is present in a larger proportion.
Molarity is defined as the amount of solute expressed in the number of moles present per liter of solution. The units of molarity are mol/L. The formula used to calculate molarity:
.......(1)
We are given:
Molarity of solution = 0.500 M
Moles of solute = 0.500 moles
Putting values in equation 1, we get:

Hence, the correct option is enough solvent to make 1.00 L of solution
To determine the heat or energy needed for the process, we use the equation,
H = mcpdT
where m is the mass, cp is the specific heat and dT is the temperature difference.
H = (95.4g)(0.44 J/g°C)(32°C - 22°C)
= 419.76 J
Thus, the amount of heat that should be ABSORBED is approximately 419.76 J.
Answer:
get rid of waste material
Answer:
6.48L
Explanation:
Given parameters:
V₁ = 2.5L
P₁ = 105 kPa
P₂ = 40.5 kPa
Condition: constant temperature
Unknown:
V₂ = ?
Solution:
To solve this problem, we are considering pressure and volume relationship. This should be solved by applying the knowledge of Boyle's law.
The law states that "The volume of fixed mass of a gas varies inversely as the pressure changes if the temperature is constant".
Mathematically;
P₁V₁ = P₂V₂
where P and V are pressure and volume, 1 and 2 represents initial and final states.
Substitute to find the V₂;
105 x 2.5 = 40.5 x V₂
Solving for V₂ gives 6.48L