2 Al+ 3 CuO-> 1 Al2O3+ 3Cu
Answer:
Mostly Para
Explanation:
First, let's assume that the molecule is the toluene (A benzene with a methyl group as radical).
Now the nitration reaction is a reaction in which the nitric acid in presence of sulfuric acid, react with the benzene molecule, to introduce the nitro group into the molecule. The nitro group is a relative strong deactiviting group and is metha director, so, further reactions that occur will be in the metha position.
Now, in this case, the methyl group is a weak activating group in the molecule of benzene, and is always ortho and para director for the simple fact that this molecule (The methyl group) is a donor of electrons instead of atracting group of electrons. Therefore for these two reasons, when the nitration occurs,it will go to the ortho or para position.
Now which position will prefer to go? it's true it can go either ortho or para, however, let's use the steric hindrance principle. Although the methyl group it's not a very voluminous and big molecule, it still exerts a little steric hindrance, and the nitro group would rather go to a position where no molecule is present so it can attach easily. It's like you have two doors that lead to the same place, but in one door you have a kid in the middle and the other door is free to go, you'll rather pass by the door which is free instead of the door with the kid in the middle even though you can pass for that door too. Same thing happens here. Therefore the correct option will be mostly para.
Answer:
Option B. 2096.1 K
Explanation:
Data obtained from the question include the following:
Enthalpy (H) = +1287 kJmol¯¹ = +1287000 Jmol¯¹
Entropy (S) = +614 JK¯¹mol¯¹
Temperature (T) =.?
Entropy is related to enthalphy and temperature by the following equation:
Change in entropy (ΔS) = change in enthalphy (ΔH) / Temperature (T)
ΔS = ΔH / T
With the above formula, we can obtain the temperature at which the reaction will be feasible as follow:
ΔS = ΔH / T
614 = 1287000/ T
Cross multiply
614 x T = 1287000
Divide both side by 614
T = 1287000/614
T = 2096.1 K
Therefore, the temperature at which the reaction will be feasible is 2096.1 K
Answer:
13.4 (w/w)% of CaCl₂ in the mixture
Explanation:
All the Cl⁻ that comes from CaCl₂ (Calcium chloride) will be precipitate in presence of AgNO₃ as AgCl.
To solve this problem we must find the moles of AgCl = Moles of Cl⁻. As 2 moles of Cl⁻ are in 1 mole of CaCl₂ we can find the moles of CaCl₂ and its mass in order to find mass percent of calcium chloride in the original mixture.
<em>Moles AgCl - Molar mass: 143.32g/mol -:</em>
0.535g * (1mol / 143.32g) = 3.733x10⁻³ moles AgCl = Moles Cl⁻
<em>Moles CaCl₂:</em>
3.733x10⁻³ moles Cl⁻ * (1mol CaCl₂ / 2mol Cl⁻) = 1.866x10⁻³ moles CaCl₂
<em>Mass CaCl₂ -Molar mass: 110.98g/mol-:</em>
1.866x10⁻³ moles CaCl₂ * (110.98g/mol) = 0.207g of CaCl₂ in the mixture
That means mass percent of CaCl₂ is:
0.207g CaCl₂ / 1.55g * 100 =
<h3>13.4 (w/w)% of CaCl₂ in the mixture</h3>
Answer:
C
Explanation:
an impure substance made through chemical process