<u>Answer:</u>
So all the possible solutions are:
<u />
<u>Solution Steps:</u>
<em>First you need to solve the real inequality to understand how to find the rest of the possible equations. </em>
<u>Add 78 to both sides:</u>
- <u />
Cancels Out
<em>So now we know the real answer, but it ask for all possible answers. </em>
(Means anything larger than 300 when you plug it into x - 78 > 300.)
<u>Numbers that are greater than 378:</u>
1.)
(False)
2.)
(True)
3.)
(False)
4.)
(False)
5.)
(True)
6.)
(True)
7.)
(False)
8.)
(True)
______________________________

Answer:
4:24 p.m.
Step-by-step explanation:
Figure out how often the buses leave at the same time. This is the same as the least common multiple (LCM) of how often they leave the stadium.
The LCM is found by multiplying the maximum number of each prime factor found in any of the numbers.
The prime factors of a number are found by dividing it by whole numbers until the factors are all prime. Prime numbers only have the factors 1 and itself.
6 = 2 X 3
8 = 2 X 2 X 2
The greatest times 2 repeats is three times.
The greatest times 3 repeats is one time.
2 X 2 X 2 X 3 = 24
The LCM is 24, and the buses have the same leaving times every 24 minutes.
Find 24 minutes after 4:00 p.m. Change the minutes only, which are the numbers right of the colon : .
The buses will next leave together at 4:24 p.m.