Answer:
There are 43200 minutes in a 30-day month.
Step-by-step explanation:
We know that:
60 minutes = 1 hour
24 hours = 1 day
Thus to determine the minutes in a 30-day month, let us first determine the number of hours in the month.
30
x 24
_______
120
60
_______
720 hours
The 30-day month has a total of 720 hours.
So that the number of minutes that make up 720 hours can be determined by;
720
x 60
_______
000
4320
_______
43200
Therefore, there are 43200 minutes in a 30-day month.
The factors of 50a³ are 1, 2, 5, 10, 25, 50,
and their products with a, a² and a³ .
The factors of 10a² are 1, 2, 5, 10,
and their products with 'a' and a² .
Their common factors are 1, 2, 5, 10,
and their products with 'a' and a².
Their greatest common factor is 10a² .
(Another way to spot it, easily, is to remember this helpful factoid:
If the smaller number is a factor of the larger number,
then the smaller number is their greatest common factor.
Using the greatest common factor, then . . .
50a³ + 10a² = 10a²(5a + 1) .
Answer:
A rotation ____on the coordinate plane________ a figure around a fixed point called the center of
___rotation_____________.
D) 34/5 because 6(5) = 30 30+4=34 , so its 34/5