1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
enyata [817]
3 years ago
15

In the figures, the masses are hung from an elevator ceiling. Assume the velocity of the elevator is constant. Find the tensions

in the ropes (in N) for each case. Note that: θ1 = 38.0°, θ2 = 52.0°, θ3 = 61.0°, m1 = 3.00 kg, and m2 = 6.00 kg.
(a)
T1 = ___N
T2 = ___N
T3 = ___N

(b)
T1 = ___N
T2 = ___N
T3 = ___N

Physics
1 answer:
Keith_Richards [23]3 years ago
6 0

The elevator may be moving, but if it is moving at a constant velocity, then the observer viewing the mass-rope system is in an inertial reference frame (non-accelerating) and Newton's laws of motion will apply in this reference frame.

A) Choose the point where the ropes intersect (the black dot above m₁) and set up equations of static equilibrium where the forces are acting on that point:

We'll assume that, because rope 3 is oriented vertically, T₃ also acts vertically.

Sum up the vertical components of the forces acting on the point. We will assign upward acting components as positive and downward acting components as negative.

∑Fy = 0

Eq 1: T₁sin(θ₁) + T₂sin(θ₂) - T₃ = 0

Sum up the horizontal components of the forces acting on the point. We will assign rightward acting components as positive and leftward acting components as negative.

∑Fx = 0

Eq 2: T₂cos(θ₂) - T₁cos(θ₁) = 0

T₃ is caused by the force of gravity acting on m₁ which is very easy to calculate:

T₃ = m₁g

m₁ = 3.00kg

g is the acceleration due to earth's gravity, 9.81m/s²

T₃ = 3.00×9.81

T₃ = 29.4N

Plug in known values into Eq. 1 and Eq. 2:

Eq. 1: T₁sin(38.0) + T₂sin(52.0) - 29.4 = 0

Eq. 2: T₂cos(52.0) - T₁cos(38.0) = 0

We can solve for T₁ and T₂ by use of substitution. First let us rearrange and simplify Eq. 2 like so:

T₂cos(52.0) = T₁cos(38.0)

T₂ = T₁cos(38.0)/cos(52.0)

T₂ = 1.28T₁

Now that we have T₂ isolated, we can substitute T₂ in Eq. 1 with 1.28T₁:

T₁sin(38.0) + 1.28T₁sin(52.0) - 29.4 = 0

Rearrange and simplify, and solve for T₁:

T₁(sin(38.0) + 1.28sin(52.0)) = 29.4

1.62T₁ = 29.4

T₁ = 18.1N

Recall from our previous work:

T₂ = 1.28T₁

Plug in T₁ = 18.1N and solve for T₂:

T₂ = 1.28×18.1

T₂ = 23.2N

B) We'll assume that, because rope 2 is horizontally oriented, T₂ also acts horizontally.

Again, choose the point where the ropes intersect and write equations of static equilibrium involving the forces acting at that point:

Sum up the vertical components of the forces

∑Fy = 0

Eq. 3: T₁sin(θ₃) - T₃ = 0

Sum up the horizontal components of the forces

∑Fx = 0

Eq. 4: T₂ - T₁cos(θ₃) = 0

Right away we can solve for T₃, which is the force of gravity acting on m₂:

T₃ = m₂g, m₂ = 6.00kg, g = 9.81m/s²

T₃ = 6.00×9.81

T₃ = 58.9N

Plug in known values into Eq. 3:

T₁sin(61.0) - 58.9 = 0

We can solve for T₁ now that is is the only unknown value in this equation

0.875T₁ = 58.9

T₁ = 67.3N

Plug in known values into Eq. 4:

T₂ - 67.3cos(61.0) = 0

We can solve for T₂ now that it is the only unknown value in this equation

T₂ = 67.3cos(61.0)

T₂ = 32.6N

You might be interested in
Gamma rays are used to _____.
Ipatiy [6.2K]
<span>d. check pipes for cracks or rust

The answer above is correct.

Gamma rays are primarily used in the medical field to kill cancer cells and examine the body's internal structures.
</span>
4 0
3 years ago
Read 2 more answers
Describe how these amendments and law expanded the political process:
Katarina [22]
Dhdddhdjdjdhdhdjdjdhdhdhdud
3 0
3 years ago
Two charges, each 9 µC, are on the x axis, one at the origin and the other at x = 8 m. Find the electric field on the x axis at
bearhunter [10]

a) Electric field at x = -2 m: 21,060 N/C to the left

b) Electric field at x = 2 m: 18,000 N/C to the right

c) Electric field at x = 6 m: 18,000 N/C to the left

d) Electric field at x = 10 m: 21,060 N/C to the right

e) Electric field is zero at x = 4 m

Explanation:

a)

The electric field produced by a single-point charge is given by

E=k\frac{q}{r^2}

where:

k=8.99\cdot 10^9 Nm^{-2}C^{-2} is the Coulomb's constant

q is the magnitude of the charge

r is the distance from the charge

Here we have two charges of

q=9\mu C = 9\cdot 10^{-6} C

each. Therefore, the net electric field at any point in the space will be given by the vector sum of the two electric fields. The two charges are both positive, so the electric field points outward of the charge.

We call the charge at x = 0 as q_0 , and the charge at x = 8 m as q_8.

For a point located at x = -2 m, both the fields E_0 and E_8 produced by the two charges point to the left, so the net field is the sum of the two fields in the negative direction:

E=-\frac{kq_0}{(0-x)^2}-\frac{kq_8}{(8-x)^2}=-kq(\frac{1}{(-2)^2}+\frac{1}{(8-(-2))^2})=-21060 N/C

b)

In this case, we are analyzing a point located at

x = 2 m

The field produced by the charge at x = 0 here points to the right, while the field produced by the charge at x = 8 m here points to the left. Therefore, the net field is given by the difference between the two fields, so:

E=\frac{kq_0}{(0-x)^2}-\frac{kq_8}{(8-x)^2}=kq(\frac{1}{(2)^2}-\frac{1}{(8-2)^2})=18000 N/C

And since the sign is positive, the direction is to the right.

c)

In this case, we are considering a point located at

x = 6 m

The field produced by the charge at x = 0 here points to the right again, while the field produced by the charge at x = 8 m here points to the left. Therefore, the net field is given by the difference between the two fields, as before; so:

E=\frac{kq_0}{(0-x)^2}-\frac{kq_8}{(8-x)^2}=kq(\frac{1}{(6)^2}-\frac{1}{(8-6)^2})=-18000 N/C

And the negative sign indicates that the electric field in this case is towards the left.

d)

In this case, we are considering a point located at

x = 10 m

This point is located to the right of both charges: therefore, the field produced by the charge at x = 0 here points to the right, and the field produced by the charge at x = 8 m here points to the right as well. Therefore, the net field is given by the sum of the two fields:

E=\frac{kq_0}{(0-x)^2}+\frac{kq_8}{(8-x)^2}=kq(\frac{1}{(10)^2}+\frac{1}{(8-(10))^2})=21060 N/C

And the positive sign means the field is to the right.

e)

We want to find the point with coordinate x such that the electric field at that location is zero. This point must be in between x = 0 and x = 8, because that is the only region where the two fields have opposite directions. Therefore, te net field must be

E=\frac{kq_0}{(0-x)^2}-\frac{kq_8}{(8-x)^2}=kq(\frac{1}{(-x)^2}-\frac{1}{(8-x)^2})=0

This means that we have to solve the equation

\frac{1}{x^2}-\frac{1}{(8-x)^2}=0

Re-arranging it,

\frac{1}{x^2}-\frac{1}{(8-x)^2}=0\\\frac{(8-x)^2-x^2}{x^2(8-x)^2}=0

So

(8-x)^2-x^2=0\\64+x^2-16x-x^2=0\\64-16x=0\\64=16x\\x=4 m

So, the electric field is zero at x = 4 m, exactly halfway between the two charges (which is reasonable, because the two charges have same magnitude)

Learn more about electric fields:

brainly.com/question/8960054

brainly.com/question/4273177

#LearnwithBrainly

6 0
3 years ago
Read 2 more answers
Conductors an insulators
sladkih [1.3K]

Conductors transfer energy (metal is a good one) and insulators stop the transfer of energy (such as rubber or plastic). Sorry if that is wrong, but I hope it helps!

6 0
3 years ago
How does the wavelength emitted by an object relate to its temperature?
OlgaM077 [116]

Explanation:

I haven't actually seen the answer I'm looking for but I think the answer is when temperatures are lower the wavelength is longer

8 0
3 years ago
Other questions:
  • If the sun disappeared what would happen to the path the planets follow?
    8·2 answers
  • which season is occurring in the southern hemisphere when earths northern hemisphere is tilted away from the sun
    9·1 answer
  • A magnetic field of 0.90 T is aligned vertically with a flat plane. The magnetic flux through the plane is 7.3 × 10^-3 Wb. What
    6·1 answer
  • Two balls, A and B are thrown at the same angle above horizontal, but initial velocity of ball A is two times greater than initi
    11·1 answer
  • Underground water is to be pumped by a 78 percent efficient 5-kW submerged pump to a pool whose free surface is 30 m above the u
    6·1 answer
  • Both mechanical and electromagnetic waves _____. have compressions and rarefactions oscillate in the same direction as the wave
    7·1 answer
  • You throw a water balloon straight up with a velocity of 13 m/s. What is its
    10·1 answer
  • The density of iron is 7.8 g/cm3, what is the mass of 5cm3 of it?
    11·1 answer
  • What type of mixture is this salad dressing?
    11·1 answer
  • compare and contrast the medical understanding of death (that you have read about and learned about in this chapter) and the pop
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!