The mass of the ball is inversely proportional to acceleration of a ball.
<h3>What is friction?</h3>
This question is incomplete but I will try to help you the much I can. Friction is the force that opposes motion. Friction depends on the nature of the surfaces in contact.
When the mass of the ball is large, the acceleration of the ball decreases since mass is inversely proportional to acceleration of a body.
Learn more about acceleration: brainly.com/question/2437624
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions here.
Below is the answers:
Fullback running
<span>Mo = mass * velocity </span>
<span>Mo = 95kg * 8.2 m/s =779 kg*m/s (a </span>
<span>He got stopped Change in Mo = 779 kg*m/s (b </span>
<span>Both stopped ===> Tackle's mo = - Halfback's Mo = - 779 kg*m/s (c & d </span>
<span>- 779 = 128 * v </span>
<span>v= - 6.09 m/s (e</span>
Normally, when something gets colder, its electrical resistance gets smaller. This is true of component-A in the drawing ... a simple resistor.
The component labeled 'B' has a strange and unusual symbol, and it's not a simple resistor. It's a "thermistor". The word "thermal" always has something to do with heat, and "thermistor" comes from "thermal resistor. These things can be manufactured either way ... using different materials, a thermistor can be manufactured so that its resistance goes UP, or goes DOWN, or doesn'tchange when it gets colder. I'm pretty sure that's what's going on here.
When this circuit gets colder, resistance-A gets smaller, but resistance-B either gets bigger OR doesn't change. Either way, the voltage across B increases. Since the LED is connected directly across B, the current through it depends on that voltage, so the LED gets more current, and becomes brighter, when A and B both get colder.
This circuit could actually be a very useful device. If you took out the LED and put a voltmeter in its place, then the reading on the voltmeter would tell you the temperature of wherever you put the two components A and B.
Answer:

Explanation:
A number can be written in the form of :

Where
m is the real number
n is any integer
In this case, the average distance from the Sun to the Earth is given,
d = 150000000000 meters
There are 10 zeroes in this number. We need to write this number in scientific notation. It is given by :

So, the average distance from the Sun to the Earth is
. Hence, this is the required solution.