1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ikadub [295]
3 years ago
14

If tan theta = 10/13 and cos theta > 0 then sin2theta is what ?

Mathematics
1 answer:
svetoff [14.1K]3 years ago
6 0

sin2\alpha  = \frac{260}{269}

<u>Step-by-step explanation:</u>

We have , Tan\alpha  = \frac{Perpendicular}{Base} = \frac{10}{13},

We know that sin\alpha  = \frac{Perpendicular}{Hypotenuse} = \frac{Perpendicular}{\sqrt[2]{(Perpendicualr)^{2} + (Base)^{2})} }

Substituting values of P & B , sin\alpha  = \frac{10}{\sqrt{10^{2} + 13^{2}} }  = \frac{10}{\sqrt{269} }

Now , sin2\alpha  = 2sin\alpha cos\alpha  = 2sin\alpha \sqrt{1 - (sin\alpha)^{2} }

⇒sin2\alpha  = \frac{10}{\sqrt{269} } ×\sqrt{1 - (\frac{10}{\sqrt{269} })^{2} }×2

⇒ sin2\alpha  = \frac{20}{\sqrt{269} }( \sqrt{\frac{269 - 100}{269} }  )

⇒sin2\alpha  = \frac{20}{\sqrt{269} }( \sqrt{\frac{169 }{269} }  )

⇒sin2\alpha  = \frac{260}{\sqrt{269} }( \sqrt{\frac{1}{269} }  )

⇒sin2\alpha  = \frac{260}{269}

You might be interested in
Find parametric equations for the path of a particle that moves along the circle x2 + (y − 1)2 = 16 in the manner described. (En
ArbitrLikvidat [17]

Answer:

a) x = 4\cdot \cos t, y = 1 + 4\cdot \sin t, b) x = 4\cdot \cos t, y = 1 + 4\cdot \sin t, c) x = 4\cdot \cos \left(t+\frac{\pi}{2}  \right), y = 1 + 4\cdot \sin \left(t + \frac{\pi}{2} \right).

Step-by-step explanation:

The equation of the circle is:

x^{2} + (y-1)^{2} = 16

After some algebraic and trigonometric handling:

\frac{x^{2}}{16} + \frac{(y-1)^{2}}{16} = 1

\frac{x^{2}}{16} + \frac{(y-1)^{2}}{16} = \cos^{2} t + \sin^{2} t

Where:

\frac{x}{4} = \cos t

\frac{y-1}{4} = \sin t

Finally,

x = 4\cdot \cos t

y = 1 + 4\cdot \sin t

a) x = 4\cdot \cos t, y = 1 + 4\cdot \sin t.

b) x = 4\cdot \cos t, y = 1 + 4\cdot \sin t.

c) x = 4\cdot \cos t'', y = 1 + 4\cdot \sin t''

Where:

4\cdot \cos t' = 0

1 + 4\cdot \sin t' = 5

The solution is t' = \frac{\pi}{2}

The parametric equations are:

x = 4\cdot \cos \left(t+\frac{\pi}{2}  \right)

y = 1 + 4\cdot \sin \left(t + \frac{\pi}{2} \right)

7 0
3 years ago
Which of the following equations represent linear functions?
jonny [76]

Answer: v^2 -4v-21

Step-by-step explanation:

4 0
3 years ago
Given g(x) =2x+4, solve for x when g (x) = -8
Temka [501]

Answer:

Step-by-step explanation:

X=-6

7 0
3 years ago
Read 2 more answers
A machine paints 158 toy planes in 45 minutes. find the unit rate per hour.
Stella [2.4K]
3.51/1 hope that helps
5 0
3 years ago
Please help me ‼️I am struggling bad <br> (x2+1)(x3-1)
iris [78.8K]

Answer:

26x²+26

Step-by-step explanation:

3 0
3 years ago
Other questions:
  • The price h of a recently brought house plus 10 property tax
    9·1 answer
  • Draw the translation of LM along the vector (4, -5)
    15·1 answer
  • Jack is taller than Sarah but shorter than both Malika and Tania. Malika is shorter than tania. Natasha is shorter than Sarah. W
    7·2 answers
  • What are the zero(s) of the function f(x)=<img src="https://tex.z-dn.net/?f=%5Cfrac%7B4x%5E%7B2%7D-36x%20%7D%7Bx-9%7D" id="TexFo
    13·1 answer
  • You have drawn a simple random sample of 36 college students, asking each student how much rent they pay per month. You obtain a
    5·1 answer
  • Which equation has no solution?
    12·1 answer
  • Find the value of x in the triangle shown below.
    13·2 answers
  • What is the value of the expression 9 + ( fraction 1 over 2 )4 ⋅ 48? (1 point)
    10·1 answer
  • If a positive number is subtracted from twice its square the result is 28. Find the number.
    7·1 answer
  • In a certain neighborhood, there's a sagging power line between two utility poles. The utility poles are 50 feet tall and 120 fe
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!