Answer:
Not me but thanks for the free points !
When ever you have percentages, it should be helpful to bear in mind you can express them as multipliers. In this case, it will be helpful.
So, if we let:
a = test score
b = target score
then, using the information given:
a = 1.1b + 1
a = 1.15b - 3
and we get simultaneous equations.
'1.1' and '1.15' are the multipliers that I got using the percentages. Multiplying a value by 1.1 is the equivalent of increasing the value by 10%. If you multiplied it by 0.1 (which is the same as dividing by 10), you would get just 10% of the value.
Back to the simultaneous equations, we can just solve them now:
There are a number of ways to do this but I will use my preferred method:
Rearrange to express in terms of b:
a = 1.1b + 1
then b = (a - 1)/1.1
a = 1.15b - 3
then b = (a + 3)/1.15
Since they are both equal to b, they are of the same value so we can set them equal to each other and solve for a:
(a - 1)/1.1 = (a + 3)/1.15
1.15 * (a - 1) = 1.1 * (a + 3)
1.15a - 1.15 = 1.1a + 3.3
0.05a = 4.45
a = 89
Answer:
4
Step-by-step explanation:
Basándonos en el hecho de que 2 rectas paralelas L1 y L2 son paralelas como lo indica el problema sabemos que m1=m2
por lo tanto si resolvemos la ecuación punto-pendiente que tenemos alli
y-2=4(x+1)
y-2=4x+4
y=4x+4+2
y=4x+6
De esta forma tendríamos la tan conocida ecuación de una recta
y=mx+b
Donde "m" es la pendiente de dicha recta y "b" es el punto de interseccion con el eje y
por lo tanto en este caso la pendiente m=4
6x + x = 49
7x=49
x=7
Substitution:
6x=6X7=42
Ivan has 42 blue beads.
And, he has 6 red beads.