Answer:
690
Step-by-step explanation:
Let
hayden have "h"
uri have "u"
and
willow have "w"
Hayden & Uri have 1250. we can write:
h + u = 1250
Hayden & Willow have 830, so we can write:
h + w = 830
Uri has 4 times than Willow, so we can write:
u = 4w
Putting 3rd equation in first, we get:
h + u = 1250
h + 4w = 1250
Now, we take 2nd and 4th equation, which are:
h + w = 830
h + 4w = 1250
Multiplying this first one with -1, gives us:
-1 * [h+w=830] = -h - w = -830
Now we add this up with 4th equation. Shown below:
- h - w = - 830
h + 4w = 1250
----------------------
4w - w = 1250 - 830
3w = 420
w = 420/3
w = 140
We know u = 4w, so u = 4 * 140 = 560
u = 560
Also, we know h + w = 830, so
h + 140 = 830
h = 830 - 140
h = 690
Thus Hayden has 690
Answer:
square
Step-by-step explanation:
when multiplied by itself the number is squared
Answer:
If the interior angle is 168, then the exterior angle is 180 - 168, or 12. The 360 degrees is evenly distributed over all of the angles, so 360/12 = 30 sides. The formula for the sum of the angles in an n-sided polygon (in degrees) is 180(n-2).
PLEASE SAID THANKS
- Square <em>:</em><em>4</em><em> </em><em>sides</em><em>,</em><em>each</em><em> </em><em>side</em><em> </em><em>9</em><em>0</em><em> </em><em>degrees</em><em> </em><em>.</em><em>.</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em>:each angle is 90 degrees
: 4 diagonals
- Rectangle: 4 sides..4 angles..2 diagonals..
- Rhombus : <u>4</u><u> </u><u>sides</u><u>.</u><u>.</u><u>2</u><u> </u><u>angles</u><u>.</u><u>.</u><u>.</u><u>2</u><u> </u><u>diagonals</u><u>.</u><u>.</u>
- Parallelogram : 4 sides..4 angles..2 diagonals..
- Quadrilateral: 4 sides...4 angles...4 diagonals..
<em>If</em><em> </em><em>this</em><em> answer</em><em> helps</em><em><u> you</u></em><em><u> plz</u></em><em><u> mark</u></em><em><u> as</u></em><em><u> brainlist</u></em><em><u>.</u></em><em><u>.</u></em>