It is the nuclear Power plant because the nuclear plant releases energy from fission from uranium atoms splitting the nucleus. This releases radiation and not too much greenhouse gases unlike its fossil fuel counterparts
Answer:
Nitrogen is in the soil under our feet, in the water we drink, and in the air we breathe. In fact, nitrogen is the most abundant element in Earth's atmosphere: approximately 78% of the atmosphere is nitrogen! Nitrogen is important to all living things, including us. Nitrogen is a naturally occurring element that is essential for growth and reproduction in both plants and animals. It is found in amino acids that make up proteins, in nucleic acids, that comprise the hereditary material and life's blueprint for all cells, and in many other organic and inorganic compounds.
Answer:
Infiltrate rate decreases and also water quality.
Explanation:
There is adverse effect of erecting buildings and concrete pavement on the recharge of aquifers and the quality of the water because the water is unable to infiltrate inside the soil due to concrete floor and the recharging of aquifers is not possible. These buildings and concrete pavements also reduces the quality of water due to degradation of sediments present in the building with the passage of time.
Answer:
Explanation:
The genes in DNA encode protein molecules, which are the "workhorses" of the cell, carrying out all the functions necessary for life. For example, enzymes, including those that metabolize nutrients and synthesize new cellular constituents, as well as DNA polymerases and other enzymes that make copies of DNA during cell division, are all proteins.
In the simplest sense, expressing a gene means manufacturing its corresponding protein, and this multilayered process has two major steps. In the first step, the information in DNA is transferred to a messenger RNA (mRNA) molecule by way of a process called transcription. During transcription, the DNA of a gene serves as a template for complementary base-pairing, and an enzyme called RNA polymerase II catalyzes the formation of a pre-mRNA molecule, which is then processed to form mature mRNA (Figure 1). The resulting mRNA is a single-stranded copy of the gene, which next must be translated into a protein molecule.
During translation, which is the second major step in gene expression, the mRNA is "read" according to the genetic code, which relates the DNA sequence to the amino acid sequence in proteins (Figure 2). Each group of three bases in mRNA constitutes a codon, and each codon specifies a particular amino acid (hence, it is a triplet code). The mRNA sequence is thus used as a template to assemble—in order—the chain of amino acids that form a protein
But where does translation take place within a cell? What individual substeps are a part of this process? And does translation differ between prokaryotes and eukaryotes? The answers to questions such as these reveal a great deal about the essential similarities between all species.