Answer:
<h2>
John has $15 and Alex has $33</h2>
Step-by-step explanation:
a systems of equations can be made from the information on the problem
x+y=48
x=2y+3
since x= 2y+3 substitute 2y+3 in the firat equation to get:
(2y+3)+y=48 -> 3y+3=48 -> 3y=45 -> y=15
plug in 15 for y in the second equation to solve for x
x+15 =48 --> x=33
Nbvcghnm, fdfvbvcfdcfffccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
The sample space is {(1,H), (1,T), (2,H), (2,T), (3,H), (3,T), (4,H), (4,T), (5,H), (5,T), (6,H), (6,T)}
On the number cube, she could roll any of the numbers from 1 to 6. On the coin, she could flip heads or tails.
(not <em>a</em> or not <em>b</em>) implies <em>c</em> <==> not (not <em>a</em> or not <em>b</em>) or <em>c</em>
so negating gives
not [(not <em>a</em> or not <em>b</em>) implies <em>c</em>] <==> not[ not (not <em>a</em> or not <em>b</em>) or <em>c</em>]
which we can simplify somewhat to
not (not (not <em>a</em> or not <em>b</em>)) and not <em>c</em>
(not <em>a</em> or not <em>b</em>) and not <em>c</em>
(not <em>a</em> and not <em>c</em>) or (not <em>b</em> and not <em>c</em>)
not (<em>a</em> or <em>c</em>) or not (<em>b</em> or <em>c</em>)
not ((<em>a</em> or <em>c</em>) and (<em>b</em> or <em>c</em>))
not ((<em>a</em> and <em>b</em>) or <em>c</em>)
The line equation is Y= - 1/2x +4