Answer:
<em>The large sample n = 117.07</em>
Step-by-step explanation:
<u><em>Step(i):-</em></u>
Given that the estimate error (M.E) = 0.08
The proportion (p) = 0.75
q =1-p = 1- 0.75 =0.25
Level of significance = 0.05
Z₀.₀₅ = 1.96≅ 2
<u><em>Step(ii):-</em></u>
The Marginal error is determined by
M.E = 

Cross multiplication , we get

√n = 
squaring on both sides , we get
n = 117.07
<u><em>Final answer:-</em></u>
<em>The large sample n = 117.07</em>