Answer:
h≅ 58 m
Explanation:
GIVEN:
mass of rocket M= 62,000 kg
fuel consumption rate = 150 kg/s
velocity of exhaust gases v= 6000 m/s
Now thrust = rate of fuel consumption×velocity of exhaust gases
=6000 × 150 = 900000 N
now to need calculate time t = amount of fuel consumed÷ rate
= 744/150= 4.96 sec
applying newton's law
M×a= thrust - Mg
62000 a=900000- 62000×9.8
acceleration a= 4.71 m/s^2
its height after 744 kg of its total fuel load has been consumed


h= 58.012 m
h≅ 58 m
Answer:

Explanation:
The question says that, "The closest star to the earth is 2 light years away. Calculate this distance in SI units".
Given that,
The distance between the closest star and the Earth is 2 light years.
The SI unit of distance is m. It means we need to convert light years to meters. We know that,

2 light-years means,

So, the required distance is equal to
.
Answer:
Average speed = 0.35 m/s
Explanation:
Given the following data;
Distance = 1.3 Km
Time = 62 minutes
To find the average speed in m/s;
First of all, we would convert the quantities to their standard unit (S.I) of measurement;
Conversion:
1.3 kilometres to meters = 1.3 * 1000 = 1300 meters
For time;
1 minute = 60 seconds
62 minutes = X
Cross-multiplying, we have;
X = 62 * 60
X = 3720 seconds
Now, we can calculate the average speed in m/s using the formula;


Average speed = 0.35 m/s
Answer:
They killed 10 million people and registered it as a colony
Explanation:
Brainliest helps
Answer:
α = F/(k×m×r)
Explanation:
When the wheel is pulled to turn in a counterclockwise direction, the wheel will have a moment of inertia given by Iw = k×m×r²
Where k = the radius of gyration of the wheel which is a dimensionless quantity less than one.
m = the mass of the wheel
r = the radius of the wheel
First and foremost, we relate the torque (τ) about the axle of the wheel to the force (F) applied on the wheel and we have that τ = r × F
We then relate the torque on the wheel to the angular acceleration (α), we have that τ = Iw × α, where Iw is the moment of inertia of the wheel as explained above
Substituting for torque τ and moment of inertia I into the above equation we have that
r × F = k×m×r² × α
solving for α we have that
α = r × F /(k×m×r²)
Therefore
α = F/(k×m×r)